Příloha č. 2
k inovované metodice výuky autoškol
Jízda za viditelnosti snížené tmou
Vysoké učení technické v Brně
Ústav soudního inženýrství

JÍZDA ZA VIDITELNOSTI SNÍŽENÉ TMOU
UČEBNICE PRO AUTOŠKOLY

Robert Kledus a kol.

Brno 2015
Název: Jízda za viditelnosti snížené tmou
učebnice pro autoškoly

Autorský kolektiv: doc. Ing. Robert Kledus, Ph.D., doc. Ing. Aleš Vémola, Ph.D.,

Vydalo: Vysoké učení technické v Brně
Ústav soudního inženýrství

Vyšlo: 2016
Vydání: první

Učebnice vznikla v rámci řešení projektu TD020239 Posílování právní jistoty při technickém
posuzování dopravních nehod s chodci za snížené viditelnosti, který byl financován Technologickou
agenturou České republiky jako součást metodiky pro vzdělávání řidičů pro jízdu za viditelnosti
snížené tmou.
Obsah

ÚVOD ... 5

1 ROZHLED ŘIDIČE PŘI JÍZDĚ ZA VIDITELNOSTI SNÍŽENÉ TMOU .. 7
 1.1 Specifika jízdy v noci .. 7
 1.2 Rozhled řidiče při jízdě .. 7
 1.3 Rozhled řidiče na vozovce osvětlené veřejným osvětlením ... 9
 1.4 Rozhled řidiče na vozovce neosvětlené veřejným osvětlením .. 11

2 ZRAKOVÉ VNÍMÁNÍ ŘIDIČE ... 15
 2.1 Důležitost zrakového vnímání .. 15
 2.2 Proč vidíme věci kolem sebe ... 15
 2.3 Jak funguje lidské oko ... 17
 2.4 Jak řidič získává informace o dění v jeho okolí ... 20

3 RYCHLOST PŘÍMĚŘENÁ ROZHLEDU PŘI JÍZDĚ V NOCI PO VOZOVCE NEOSVĚTLENÉ VEŘEJNÝM
 OSVĚTLENÍM ... 23
 3.1 Rychlost přiměřená rozhledu podle zákona ... 23
 3.2 Vzdálenost, na kterou má řidič rozhled .. 23
 3.3 Dráha potřebná na zastavení ... 27
 3.4 Rychlost jízdy přiměřená rozhledu .. 30
 3.5 Co může přinést novela pravidel silničního provozu ... 33

4 PĚČE O VOZIDLO A AKTIVNÍ BEZPEČNOST ... 34
 4.1 Před jízdou věnujte pozornost svému vozidlu .. 34
 4.2 Co dnes auta umí ... 37

5 JÍZDA ZA VIDITELNOSTI SNÍŽENÉ TMOU .. 39
 5.1 Jízda v obci a po vozovce osvětlené veřejným osvětlením .. 39
 5.2 Jízda mimo obec a po vozovce neosvětlené veřejným osvětlením .. 41
 5.3 Zásady společné ... 45
 5.4 Zásada omezené důvěry .. 48

6 ZÁVĚREČNÉ SHRnutÍ ZÁSAD PRO JÍZDU ZA VIDITELNOSTI SNÍŽENÉ TMOU .. 50

SEZNAM VIDEOUKÁZEK .. 51

POUŽITÉ ZDROJE .. 52

PODĚKOVÁNÍ ZA SPOLUPRÁCI .. 54
Úvod

Vážení čtenáři,
tato učebnice je primárně určena lektorům autoškol, kteří připravují uchazeče o řidičská oprávnění a školí profesionální řidiče, kteří již mají bohaté zkušenosti s řízením motorových vozidel ve dne i v noci.

Učebnice se monotematicky zaměřuje na problematiku jízdy za viditelnosti snížené tmou. Poprvé komplexně vysvětluje problematiku rozhledu řidiče při jízdě s vozidlem. Důraz se kladne na podmínky, kdy je viditelnost snížena tmou. V učebnici se vysvětluje rozdíly mezi denním a nočním viděním, upozorňuje se na omezení při zrakovém vnímaní za zhoršených světelných podmínek. Videoukázky, které doplňují výklad, ukazují reálné možnosti řidiče při reakcích na chodce.

Učebnice podrobně analyzuje problematiku jízdy přiměřeně rozhledu při jízdě. Uvádí praktická doporučení pro jízdu, a to jak pro jízdu na vozovce osvětlené, tak i neosvětlené veřejným osvětlením. Upozorňuje i na případy, kdy se řidič nemůže spoléhat na dodržování pravidel silničního provozu ostatními účastníky a musí dbát zvýšené opatrnosti, anebo s předstihem reagovat na situaci v silničním provozu, aby bylo zabráněno nehodě. Stručně se v učebnici uvádí i problematika péče o vozidlo před jízdou a upozorňuje se i na důležité prvky výbavy vozidla, které zvyšují aktivní bezpečnost při jízdě v noci.

Je vhodné, aby učebníci využili i uchazeči o řidičská oprávnění a také zkušení řidiči.

Uchazeči o řidičská oprávnění by si měli uvědomit, že v rámci výcviku v autoškole nelze běžně zajistit, aby získali dostatek praktických zkušeností s jízdou v noci. Jen málo z nich bude při výcviku v autoškole řídit motorové vozidlo v noční době. Až získají řidičské oprávnění, nepochybně nastanou situace, kdy budou muset řídit vozidlo i v noci. Na to je připravuje výuka v autoškole tím, že jim lektori autoškol vysvětlí specifika, která musí při jízdě za viditelnosti snížené tmou zohlednit, aby neohrozili sebe ani další účastníky silničního provozu. Teoretické poznatky, které získají v autoškole, je učí správně se rozhodovat a jednat v nových a měnících se podmínkách silničního provozu, upozorní je na omezení při jízdě v noci a na hlavní související rizika. Tím jim umožní jezdit předvídatě a vynout se v praxi fatálním chybám. Novi řidiči by si měli uvědomovat, že při jízdě v noci má vážné důležitost předvídati nebezpečí. Světelné podmínky řidiči omezuji rozhled a tím mu zkracují dobu, kterou má na správné rozhodování a jednání. Aby se řidič naučil předvídati nebezpečí, musí mít nejen teoretické znalosti, ale i dostatek praktických zkušeností. Variabilitu jízdních situací by však měl poznávat nejprve při jízdě ve dne, kdy má více času na rozhodování a jednání. Začínající řidiči by měli jezdit v noci až po získání dostatečné praxe při jízdě ve dne. Učebníci pak mohou využít k připomenutí toho, co se naučili v autoškole i k dalšímu rozšíření těchto poznatků.

Učebnice slouží i pro rozšiřování teoretických znalostí řidičů, kteří mají praktické zkušenosti s řízením vozidla ve dne i v noci a v řidičské praxi již sami poznali úskalí noční jízdy. Pod vedením lektorů, příp. v rámci samostudia, jim umožňuje porovnat své praktické zkušenosti se zásadami uvedenými v tomto textu. Pokud v něm najdou náměty, které jim pomohou jezdit bezpečněji, splní publikace svůj cíl. Pokud zjistí, že potřebné znalosti a zkušenosti získali již praxi a také je uplatňují při jízdě, jedná se o dobré řidiče, protože svoji předvídativost chrání nejen sebe, ale i ostatní.

Publikace vychází z dlouholetých zkušeností autorů, kteří jsou znalci v oblasti analýzy dopravních nehod a ve své praxi se setkali s objasňováním příčin mnoha dopravních nehod, z nichž řada se stala v noci. Zahrnuje nové poznatky z výzkumu chování řidiče při
jízdě v noci, získaných na základě řešení projektu TD020239 Posilování právní jistoty při technickém posuzování dopravních nehod s chodci za snížené viditelnosti, který byl financován Technologickou agenturou České republiky. Rovněž vychází z bohatých zkušeností učitelů autoškol, kteří se aktivně zapojili do její přípravy. Zvláštní poděkování tak patří výkonné radě Asociace autoškol ČR, o. s., a v neposlední řadě panu Jiřímu Martínkovi jako hlavnímu koordinátorovi při spolupráci Ústavu soudního inženýrství Vysokého učení technického v Brně s Asociací autoškol ČR při přípravě této publikace. Autoři a všichni další, kteří se na její přípravě podíleli, věří, že shrnutí základních zásad pro jízdu v noci pomůže řidičům osvojit si zásady bezpečné jízdy a minimalizovat pro ně rizika spojená s řízením vozidel v noční době.
Za autorský kolektiv

doc. Ing. Robert Kledus, Ph.D.

Vysvětlivky k ikonám

- Zapamatujte si
- Příklad
- Pro zájemce
1 Rozhled řidiče při jízdě za viditelnosti snížené tmou

1.1 Specifika jízdy v noci

Je rozdíl řídit vozidlo ve dne a v noci. Příčina je zcela zřejmá. V noci je viditelnost snížena tmou.

Horší světelné podmínky omezují rozhled řidiče. Řadu důležitých objektů může řidič vidět na kratší vzdálenost než ve dne. Obtížněji rozpoznává tvary a detaily důležitých objektů i jejich rozmístění v prostoru.

Za tmy řidič obtížněji odhaduje sklon a zakřivení vozovky, hůř poznává dopravní značení. Jde-li po vozovce chodec, má řidič problém rozpoznat, zda se jedná o postavu, neosvětlenou překážku, či pouhý stín. Za takových podmínek je pro řidiče mnohem obtížněji světelné podmínky. Řidič se orientovat na silnici a včas reagovat na změny jízdní situace. Nepřizpůsobí-li však rychlost jízdy těmto podmínkám, zvýší tím riziko dopravní nehody.

1.2 Rozhled řidiče při jízdě

Při řízení vozidla musí mít řidič dobrý rozhled, aby důležité objekty registroval na dostatečnou vzdálenost od vozidla a měnícím se podmínkám mohl včas přizpůsobit způsob jízdy.

Neuvažujeme-li se subjektivními omezeními řidiče (omezení zdravotní a jiná), rozhled mu mohou omezovat:

1. pevné překážky, tj. konstrukční prvky řízeného vozidla, objekty ve vozidle, vlastní komunikace, po které se vozidlo pohybuje, objekty na komunikaci a prvky okolí komunikace,
2. stav atmosféry, běžně déšť, mlha, sněžení, smog,
3. světelné podmínky, tedy nedostatek či přebytek světla.

Příklad

Pokud si řidič ve dne za jasného počasí sedne do vozidla a rozhlédne se, měl by si hned uvědomit, že mu v rozhledu různými směry brání pevné překážky.

– Nejbližší jsou konstrukční prvky řidičem řízeného vozidla. Nejčastěji brání řidiči v rozhledu sloupky karoserie. Řidič by si měl hned zvyknout na to, že když se rozhliží, musí vždy změnit i polohu těla a podívat se, co se schovává za sloupky karoserie. Není např. výjimečné, že pohyb řidičem řízeného vozidla se synchronizuje s pohybolem vozidla na hlavní silnici a vozidlo na hlavní silnici zůstává při příjezdu ke křižovatce schované v oblasti, kde řidiči omezují rozhled jeden ze sloupků karoserie. V rozhledu do křižovatky často řidiči často brání spolucestující osoby. Často omezují rozhled řidiče i znečištěná, zamířená, namrzlá, zamlžená či dokonce poškozená skla vozidla.

– Podívá-li se řidič na vozovku, vidí, že mu v rozhledu brání i samotná vozovka, např. vrchol stoupání, či jiné její zakřivení. Co je za kopcem se řidič dozví, až tam dojede.

– V rozhledu brání řidiči i různé objekty na komunikaci. Nastupující a vystupující cestující nevidí kvůli autobusu, který stojí na zastávce, chodce na přechodu nevidí kvůli vřepu stojícímu nákladnímu automobilu, dítě vstupující do vozovky nevidí, protože je schovené mezi vozidly odstavenými na kraji vozovky.

– V rozhledu do zatáčky či do křižovatky brání řidiči objekty v okolí komunikace, terénní útvary, stromy, budovy, reklamní tabule atd.
Za mlhy, sněžení, při dešti apod. řidič zjistí, že kromě pevných překážek mu v rozhledu brání i stav atmosféry.

V noci pak zjistí, že mu rozhled omezuje světelné podmínky. Neosvětlené objekty nevidí kvůli tmě. Naopak z protijedoucího vozidla jasně vidi jen jeho světlomety a kvůli přebytku světla není schopen podrobněji určit, a jaké vozidlo se jedná.

Má-li řidič rozhled omezen, musí zvýšit opatrnost a zpomalit jízdu.

Omezení rozhledu při jízdě ve dne

Ve dne je pro jízdu s vozidlem zemský povrch dostatečně osvětlen přírodním světlem v podobě slunečního svitu.

Rozhled řidiče významně omezuje pevné překážky, podle okolností i stav atmosféry, zejména za deště, mlhy a sněžení.

Omezení rozhledu při jízdě v noci

V noci zemský povrch není dostatečně osvětlen přírodním světlem. Světlo hvězd a světlo slunce odražené od měsíce v podobě měsíčního svitu je pro jízdu s vozidlem nedostatečné.

Obdobně jako ve dne řidiči významně omezuji rozhled pevné překážky a stav atmosféry.

Oproti denní době má řidič, v důsledku nedostatku přírodního světla po celou dobu jízdy omezen rozhled světelnými podmínkami. Jedná se o další okolnost, které musí přizpůsobit způsob jízdy.

Při nedostatku přírodního světla se sice zlepšuje rozhled na zdroje světla, podstatně se však zhoršuje rozhled na objekty bez vlastního osvětlení.

Zdroje světla, jako jsou lampy veřejného osvětlení, světla ostatních vozidel, svítidla označující překážky apod., jsou v noci běžně viditelné na velkou vzdálenost. Za úplné tmy dokonce větší než ve dne.

Objekty bez vlastního osvětlení lze v noci na dostatečnou vzdálenost vidět zpravidla jen tehdy, jsou-li dostatečně osvětleny od zdrojů umělého světla, tedy běžně jsou-li osvětleny veřejným osvětlením nebo až po osvětlení světlomety řidičem řízeného vozidla či světlomety jiných vozidel.

Jízda v noci v závislosti na světelných podmínkách

Při nedostatku přírodního světla je řidič odkázán na umělé zdroje světla. Rozhled řidiče pak významně závisí na tom, jak a jaké zdroje umělého světla vozovku osvětlují a řidič pak musí rozlišovat mezi jízdou po vozovce:

- osvětlené veřejným osvětlením a
- neosvětlené veřejným osvětlením.

Řízení vozidla na vozovce osvětlené a neosvětlené veřejným osvětlením má svá specifika, hrozi při něm jiná nebezpečí a řidič je musí při jízdě zohlednit.
1.3 Rozhled řidiče na vozovce osvětlené veřejným osvětlením

Zdroje světla při jízdě po vozovce osvětlené veřejným osvětlením

Je-li komunikace osvětlena veřejným osvětlením, mohou se při jízdě za tmy na jejím osvětlení podílet:

- samotné lampy veřejného osvětlení,
- světlomety řidičem řízeného vozidla,
- světlomety dalších vozidel,
- další případné zdroje umělého světla.

Osvětlují-li lampy veřejného osvětlení vozovku dostatečně a souvisle, jsou pro řidiče hlavním zdrojem světla. Řidič je povinen použít světla potkávací a světlomety vozidla spíše jen zlepšují viditelnost vozidla pro ostatní účastníky provozu.

Světlomety řidičem řízeného vozidla vždy významně přispívají k osvětlení vozovky v místech, která nejsou dostatečně a souvisle osvětlena.

Z pohledu řidiče k osvětlení vozovky většinou nijak významně nepřispívají světlomety dalších vozidel. Někdy na řidiče rušivě působí světlomety protijedoucích vozidel, zvláště při větší hustotě provozu.

Osvětlení komunikace lampami veřejného osvětlení

Při jízdě po vozovce s veřejným osvětlením si řidič musí uvědomovat, jak v daném místě dokáží lampy vozovku osvětlit.

V praxi se lampy veřejného osvětlení běžně umisťují:

- uprostřed jízdních pruhů,
- po jedné straně vozovky,
- po obou stranách vozovky,
- jak po obou stranách vozovky, tak i uprostřed jízdních pruhů.

Příklady ukazují obrázky 1 až 4.

Obr. 1: Vozovka osvětlená lampami umístěnými uprostřed jízdních pruhů

Obr. 2: Vozovka osvětlená lampami umístěnými po obou stranách vozovky i uprostřed jízdních pruhů

Obr. 3: Vozovka osvětlená lampami umístěnými po jedné straně vozovky

Obr. 4: Vozovka osvětlená lampami umístěnými po obou stranách vozovky

Z obrázků je zřejmé, že lampy veřejného osvětlení dokáží vozovku osvětit na velkou vzdálenost, oproti denní době je však osvětlení vozovky i jejího okolí značně nedokonalé a významně závisí na způsobu, jakým jsou lampy rozmístěny.

Jsou-li lampy umístěny uprostřed jízdních pruhů, zpravidla nedostatečně osvětlují oba okraje vozovky a místa přiléhající k vozovce (viz obr. 1).

Jsou-li umístěny po jedné straně vozovky, zpravidla nedostatečně osvětlují celou protilehlou část komunikace (viz obr. 3).

Jsou-li umístěny po obou stranách vozovky, bývají nedostatečně osvětlena zpravidla jen místa přiléhající k vozovce (viz obr. 4).

Na komunikacích s více než dvěma jízdními pruhy se lepšího osvětlení vozovky dosahuje tím, že se lampy veřejného osvětlení umisťují nejen po obou stranách vozovky, ale i uprostřed jízdních pruhů (viz obr. 2).

Souvislost osvětlení pak závisí především na rozestupech mezi lampami, jejich svitivosti a způsobu usměrnění světla.
Rozhled řidiče na důležité objekty při jízdě po vozovce osvětlené lampami veřejného osvětlení

Při jízdě po vozovce osvětlené lampami veřejného osvětlení si řidič musí uvědomit, že oproti denní době mu světelné podmínky významně zhoršují rozhled
• jak na vozovku a místa přiléhající k vozovce,
• tak i na objekty s vlastním osvětlením,
• zejména však na objekty bez vlastního osvětlení.

Rozhled řidiče na vozovku a místa přiléhající k vozovce se omezuje jen na oblast účinně osvětlenou veřejným osvětlením a světlomety vozidla.

Oproti podmínkám za tmy, lampy veřejného osvětlení významně přispívají k lepší orientaci řidiče na vozovce. Řidič si však musí uvědomit, že na vozovce jsou úseky, které lampy neosvětlují nebo je osvětlují nedostatečně. K jejich lepšímu osvětlení dojde až po jejich osvětlení světlomety řidičem řízeného vozidla a řidič tomu musí přizpůsobit rychlost jízdy.

řidič má pak ovlivněn rozhled na objekty s vlastním osvětlením. Veřejné osvětlení, oproti podmínkám za tmy, sice o něco zhorší viditelnost světel, která objekty označují, významně však zlepší viditelnost samotných objektů.

řidič by si měl uvědomit, že na umělé osvětlené vozovce může snadno přehlédnout slabé zdroje světla. Měl by zvýšit opatrnost např. v místech, kde se po vozovce pohybuji cyklisté. Svitilnu, kterou je cyklista označen, lze při umělé osvětlení snadno přehlédnout, protože v porovnání se světlomety motorových vozidel má jen malou plochu a často i nižší jas. Umělé světlo lamp však řidiči umožní, dříve než za tmy, poznat, že se jedná o cyklistu.

řidič má také ovlivněn rozhled na objekty bez vlastního osvětlení. Oproti podmínkám za tmy se rozhled řidiče na neosvětlené objekty významně zlepší v místech, kde je vozovka osvětlena dostatečně a souvisle. Jinde však musí řidič počítat s významným omezením rozhledu na tyto objekty.

Typickým příkladem je chodec bez vlastního osvětlení. Pokud se nachází v místě, které lampy neosvětlují, řidič jej uvidí zpravidla až v okamžiku, kdy chodec vyjde z nedostatečně osvětlené oblasti, nebo kdy se řidičem řízené vozidlo k chodci přiblíží natolik, že ho světlomety vozidla dostatečně osvětlí. Má-li řidič rozhled významně omezen světelnými podmínkami, musí zvýšit opatrnost.

1.4 Rozhled řidiče na vozovce neosvětlené veřejným osvětlením

Zdroje světla při jízdě za tmy po vozovce neosvětlené veřejným osvětlením

Není-li komunikace osvětlena veřejným osvětlením, mohou se při jízdě za tmy na jejím osvětlení podílet:
• světlomety řidičem řízeného vozidla,
• světlomety dalších vozidel,
• další případné zdroje umělého světla.

Z uvedených zdrojů světla vozovku před vozidlem nejlépe osvětluji světlomety řidičem řízeného vozidla. Proto jsou pro řidiče hlavním zdrojem světla.

Z pohledu řidiče mohou k osvětlení vozovky důležitém způsobem přispívat i světlomety dalších vozidel. Typicky za situace, kdy řidič jede za jiným vozidlem a světlomety vpředu jedoucího vozidla mu osvětluji další úsek vozovky. Naopak vždy rušivě působí na řidiče
Světlomety protijedoucích vozidel, které narušují adaptaci zraku řidiče na tmu a mohou ho oslnit.

Osvětlení vozovky z pohledu řidiče významněji nezlepšují další zdroje umělého světla. Nápadné a silné zdroje světla mohou na řidiče působit ještě rušivěji než na komunikaci s veřejným osvětlením, protože na komunikaci bez veřejného osvětlení je zrak řidiče více adaptován na tmu.

Osvětlení komunikace světlomety řidičem řízeného vozidla

Při jízdě po vozovce neosvětlené veřejným osvětlením si řidič musí uvědomovat, jak světlomety jím řízeného vozidla osvětlují vozovku. Její osvětlení závisí jak na provedení světlometů, tak i na způsobu jejich použití řidičem.

Za snížené viditelnosti, při obvyklých atmosférických podmínkách, používá řidič

- předešlé světla dálková,
- případně světla potkávací, která musí použít, pokud by mohl být oslněn řidič protijedoucího vozidla, řidič vozidla jedoucího před ním nebo jiný účastník provozu na pozemních komunikacích.

Pouze za mlhy, sněžení nebo hustého deště smí řidič užít i přední světla do mlhy.

Příklad účinně osvětlené oblasti při použití dálkových a potkávacích světel ukazují obrázky 5 a 6.

Obr. 5: Účinně osvětlená oblast – světla dálková

Obr. 6: Účinně osvětlená oblast – světla potkávací

Z obrázků je zřejmé, že způsob použití světel velmi významně ovlivňuje rozhled řidiče. Dálková světla běžně účinně osvítila vozovku na vzdálenost cca 150 m.

Světla potkávací jsou ve směru k protijedoucím vozidlům odstíněna. Vozovku proto osvětlují nesymetricky, a to ve směru k pravému okraji na vzdálenost cca 70 m a ve směru ke středu na vzdálenost cca 50 m. Navíc jsou potkávací světla skloněna směrem k vozovce. Omezují se tím oslnění řidičů protijedoucích vozidel, zhoršuje se však rozhled na překážky bez osvětlení.

3 Zákon č. 361/2000 Sb. ze dne 14. září 2000, o provozu na pozemních komunikacích, v platném znění, viz ustanovení § 32 odst. 4

4 Jako hranice účinně osvětlené oblasti se uvažuje intenzita osvětlení 2 luxy (Lx), velikost účinně osvětlené oblasti se může lišit podle konstrukce světlometů a použitéch zdrojů světla.
Světlomety dálkové i potkávací účinně osvětluji různě velký, ale vždy jen značně omezený prostor před vozidlem. Osvětlení vozovky i jejího okolí je tak ještě méně dokonalé než na vozovce s veřejným osvětlením.

Rozhled řidiče na důležité objekty při jízdě po vozovce neosvětlené lampami veřejného osvětlení

Při jízdě za tmy po vozovce neosvětlené ještě méně dokonalé než na vozovce s veřejným osvětlením. Osvětlení vozovky i jejího okolí je tak ještě méně dokonalé než na vozovce s veřejným osvětlením.

Rozhled řidiče na důležité objekty při jízdě po vozovce neosvětlené lampami veřejného osvětlení

Při jízdě za tmy po vozovce neosvětlené lampami veřejného osvětlení si řidič musí uvědomit, že oproti podmínkám na vozovce osvětlené lampami mu světelné podmínky dále zhoršují rozhled

- jak na vozovku a místa přiléhající k vozovce,
- tak i na objekty s vlastním osvětlením,
- především na objekty bez vlastního osvětlení.

Rozhled řidiče na vozovku a místa přiléhající k vozovce se běžně omezují na účinně osvětlenou světlomety vozidla.

Řidič má pak ovlivněn rozhled na objekty s vlastním osvětlením. Samotná tma neomezí rozhled na světla, která objekty označují, ale omezuje rozhled na samotné objekty.

Světla, která označují důležité objekty pro řízení vozidla, bývají za tmy dobře viditelná i na vzdálenost větší než ve dne. Řidič však musí počítat s tom, že typ a rozměry objektu dokáže zjistit často až v okamžiku, kdy objekt osvětlí světlomety jím řízeného vozidla. Tomu musí přizpůsobit způsob jízdy a s předstihem reagovat již na označení objektu světly.

Řidič má značně ovlivněn rozhled na objekty bez vlastního osvětlení. Rozhled na tyto objekty velmi významné, ale omezují rozhled na samotné objekty.

Nejlepší rozhled má řidič na objekty s povrchem z reflexních materiálů (např. na dopravní značky, osoby používající bezpečnostní reflexní vesty apod.). Reflexní materiály mají vysoký jas i při silněm osvětlení. Na tmavém pozadí jsou proto dobře viditelné a při velké vzdálenosti vozidla od objektu, tedy i za situace, kdy je vozidlo osvětluje na velkou vzdálenost a tedy jen velmi slabě.

Naopak nejhorší rozhled má řidič na objekty s povrchem, který pohlcuje světlo (např. na chodce v černém bavlněném obléčení). Jas takového objektu je nízký i při silném osvětlení. Na tmavém pozadí bývá viditelný až v okamžiku, kdy se k němu vozidlo zřejmě přiblíží a dokáže ho dostatečně osvětit.

Mnohé jízdní situace tak od řidiče vyžadují nejen přizpůsobení rychlosti jízdy, ale i velkou předvídatost a obezřetnost.
Příklad

Na videokázách č. 1 a č. 2 porovnejte jízdu řidiče ve dne a v noci. Všimněte si hlavního rozdílu. Ve dne řidič běžně sleduje dění před vozidlem na vzdálenost 200 až 300 m a vídí ještě podstatně dál. Tuto vzdálenost i při nejvyšší povolené rychlosti ujede vozidlo za 8 až 12 s. V běžných (nenáhlých) situacích tak má řidič na rozpoznání důležitých objektů, rozhodování a přizpůsobení způsobu jízdy běžně 8 i více sekund. Za tmy musí řidič počítat s časem podstatně kratším. Ten pak významně závisí na rychlosti jízdy. Směr pohledu řidiče na videu znázorňují soustředné kružnice. Porovnejte vzdálenosti, při kterých řidič ve stejné situaci reaguje na chodce. Ve dne chodce poprvé registruje ve vzdálenosti 183 m před vozidlem, v noci jen na vzdálenost 51 m.
2 Zrakové vnímání řidiče

2.1 Důležitost zrakového vnímání

Člověk jako hlavní rizikový faktor v dopravě

Ze statistik dopravních nehod vedených Policií ČR vyplývá, že až 90 % všech dopravních nehod vzniká v důsledku selhání lidského faktoru. Člověk je proto hlavním rizikovým faktorem v dopravě.

Většinu (až 85 %) dopravních nehod zaviní řidiči motorových vozidel, nejčastěji proto, že si neuvědomí některá fyzikální, psychická, psychologická či motorická omezení při jízdě a přece své schopnosti.

Pro zájemce

V roce 2014 došlo v ČR celkem k 85 859 dopravním nehodám. Řidiči motorových vozidel zavinili 85 % těchto nehod, řidiči nemotorových vozidel, chodci a jiní účastníci silničního provozu zavinili 9 % nehod, zvířectvo zavinilo 5 % nehod a jen 1 % nehod připadá na závady na motorovém vozidle, na vliv komunikace a jiná zavinění.

Význam zrakového vnímání při řízení vozidla

Podmínky pro jízdu se neustále mění, a to jak v závislosti na vlastnostech vozovky, tak i s ohledem na situaci na vozovce i v jejím okolí. O důležitých změnách musí být řidič včas informován, aby na ně mohl reagovat a přizpůsobil jim způsob jízdy.

Nejvíce informací získává řidič pomocí zraku. Zrakové vnímání představuje mimořádně všestranný proces, na kterém se podílí nejen oči řidiče, ale i značná část jeho mozku.

Kvalita zrakového vnímání tak má pro řidiče mimořádnou důležitost a za situace, kdy ji limitují světelné podmínky, by si měl řidič reálná omezení uvědomit a neměl by přeceňovat své schopnosti.

2.2 Proč vidíme věci kolem sebe

Všechny věci kolem sebe vidí člověk, a tedy i řidič, díky světlu.

- Zdroje světla, jako jsou slunce, hvězdy na noční obloze, lampy, světlovod světelný vozidel, svítící reklamy apod., vidí díky světlu, které tuto část výkaři.

- Ostatní objekty, jako jsou např. měsíc, silnice, stromy, dopravní značky apod., vidí díky světlu, které na tyto předměty dopadá a odrážejí se od jejich povrchu.

Přirozeným zdrojem světla na zemském povrchu je slunce. Jeho energie je obrovská, čemuž odpovídá i velká intenzita záření, které dopadá na oslněnou část zemského povrchu. Slunce bývá slabým zdrojem světla i v noci. Sluneční svit se odráží od měsíce a

může dopadat na zastíněnou část zemského povrchu. V porovnání s denní dobou se však jedná jen o zanedbatelné množství.

Pro zájemce

Při slunném dni na 1 m² (1 metr čtvereční) zemského povrchu dopadne přibližně 10²⁰ fotonů za sekundu. Na plochu 1 μm² (1 mikrometr čtvereční), která přibližně odpovídá velikosti světločivé buňky oka, tak dopadne asi 100 milionu fotonů za sekundu. V noci při měsíčním světle na stejnou plochu dopadá asi 100 fotonů a při světle hvězd jen jednotky fotonů za sekundu. Rozdíly mezi dnem a nocí jsou skutečně značné.

Při nedostatku přírodního světla je řidič odkázán na jeho umělé zdroje. Při jízdě by si měl uvědomit, že světlený výkon umělých zdrojů světla je v porovnání se sluncem jen velmi malý.

Díky tomu u nich lze dobře pozorovat jev, který u slunce v pozemských podmínkách vůbec nevímáme, a to, že intenzita osvětlení povrchu určitého tělesa se snižuje s druhou mocninou vzdálenosti od zdroje. To je pro jízdu s vozidlem velmi nepříznivé. Vozidla se většinou pohybují značnou rychlostí. Řidič proto potřebuje důležité objekty vidět na značnou vzdálenost.

Pokud vozovku osvětluji pouze světlomety vozidla, s rostoucí vzdáleností od vozidla světla rychle ubývá, což zásadním způsobem zhoršuje viditelnost objektů bez vlastního osvětlení.

Obraz 7: Intenzita osvětlení chodce na vzdálenost 20, 40, 60 m od vozidla

Příklad

Na obr. 7 porovnejte intenzitu osvětlení chodce při použití potkávacích světel. Je-li chodce vzdálen od přídě vozidla 20 m, je intenzita osvětlení chodce dostatečná pro vnímání detailů i barev. Ve vzdálenosti 40 m je intenzita osvětlení již přibližně 4x menší. Lidské oko nerozliší detaily ani barvy. Ve vzdálenosti 60 m je intenzita osvětlení již 9x menší a chodce nelze odlišit od jeho pozadí.

8 Intenzita osvětlení je fotometrická veličina, která popisuje světelný tok dopadající na jednotku plochy. Intenzity osvětlení E je dána podílem světelného toku (v lumenech) a plochy (v metrech čtverečních). Její jednotkou je lumen na metr čtverečný [lm/m²], zkráceně lux [lx]. Při vzdálenosti r tělesa od bodového zdroje světla o svitivosti I, kdy povrch tělesa je kolmý k dopadajícím paprskům se intenzita osvětlení E vypočítá podle vztahu E = I/r².
Když světlo dopadne na povrch určitého tělesa, část světla těleso pohltí a část ho odrazí.

Světlo, které se ve směru k pozorovateli od objektu odráží, umožňuje člověku, a tedy i řidiči, vidět i předměty, které nesvítí. Při nízké intenzitě osvětlení jsou však hůř viditelné, než za dobrých světelných podmínek, protože na povrch objektu dopadá méně světla, a proto se ho i méně odrazí.

2.3 Jak funguje lidské oko

Zpracování světla lidským okem

Světlo, které tělesa ve směru k pozorovateli vyzařují nebo odráží, zachycují oči pozorovatele. Na obr. 8 vidíme řez lidským okem. Světlo, které do oka vstupuje, prochází
- rohovkou,
- přední komorou a přes
- oční čočku a
- sklice

dopadá na zadní část oka pokrytou sítnicí.

Obr. 8: Řez lidským okem

Nejpozoruhodnější částí oka je sítnice. Jedná se o vnitřní tenkou vrstvu oka tvořenou více vrstvami různých buněk, které dokáží světlo zachytit, v reálném čase vyhodnotit rozložení světla v celém zorném poli řidiče, informaci převést na nervové impulsy a přes zrakovou dráhu ji předat k dalšímu zpracování do mozku, kde vzniká zrakový vjem.
Přizpůsobit se různým světelným podmínkám pomáhá oku *duhovka*. Jedná se o neprůhlednou částoka ve tvaru mezíkruží, která světlu zabraňuje, aby do oka dopadalo jinak, než zorníce oka (otvorem uprostřed duhovky). Hlavní součástí duhovky jsou dva hladké svaly, které jsou zodpovědné za reakci zornice na intenzitu světla. Podle světelných podmínek se zornice zužuje a rozšiřuje tak, aby do oka vždy dopadalo jen tolik světla, kolik je potřeba. Při silném osvětlení se zornice zúží, aby na sítnici dopadal jen úzký svazek paprsků, naopak za tmy se rozšíří, aby na sítnici dopadalo světla co nejvíce.

Pro zájemce

Rohovka je přední, dokonale průhledná část oka, která láme světlo tak, aby bylo správně směřováno k sítnici.

Přední a zadní komora jsou malé prostory vyplněné očním mokem, mezi nimiž se nachází dokonale neprůhledná duhovka. Světlo prochází do oka jen přední komorou.

Oční čočka je pružná čočka uchycená na řasnatém tělísku, které ji dokáže napínat a zploštovat a tím umožňuje ostřit na různé vzdálenosti.

Sklivec je rosolovitá hmota, která vyplňuje 2/3 vnitřního prostoru oční koule a zajišťuje oku stálý tvar.

Rozdíl mezi denním, nočním a smíšeným viděním

Zvláště důležitou částí sítnice je vrstva světločivých buněk. Tvoří ji buňky dvou typů, čípky a tyčinky. Čípků je asi 7 milionů, tyčinek asi 120 milionů. Na denním a nočním vidění se čípky a tyčinky podílejí různou měrou.

- **Denní vidění** je zajištěno především pomocí čípky. Tyto umožňují dokonale vnímání barev pozorovaných objektů a velmi kvalitní vidění. Čípky však dokáží zprostředkovat zrakový vjem jen při dostatečném vnějším osvětlení.
- **Noční vidění** je zajištěno pouze tyčinkami. Tyto dokáží zrakový vjem zprostředkovat i při velmi slabém vnějším osvětlení. Neumožňují však vnímat barvy, ale pouze js pozorovaných objektů. Kvalita vidění se tím zhorší.
- **Smíšené vidění** je zajištěno jak čípky, tak tyčinkami. Jeho typickým příkladem je vidění na komunikaci osvětlené uměle veřejným osvětlením.

Činnost duhovky a sítnice umožňuje lidskému oku přizpůsobovat se (adaptovat se) na různou úroveň okolního osvětlení. Díky tomu může řidič vidět jak při silném, tak i při velmi slabém vnějším osvětlení.

Řidič si však musí uvědomit, že v závislosti na světelných podmínkách se významně mění kvalita jeho vidění. Při slabém vnějším osvětlení zrak ztrácí schopnost vnímat barvy, prostorový vjem je pak nedokonalý a vidění je i méně ostré než ve dne (viz obr. 9)

Pro zájemce

Zorné pole řidiče

Člověk, a tedy i řidič, je pomocí očí informován o dění v jeho okolí ve velmi širokém úhlovém rozmezí. V horizontální rovině je člověk schopen periferně vnímat dokonce i podněty v rovině očí. Jeho zorné pole je tak dostatečně široké, s rostoucí rychlostí se však zužuje.

Pro jízdu s vozidlem je vhodné si uvědomit, že člověk, a tedy i řidič, vidí dokonale ostře jen objekty, které se nacházejí přímo ve směru osy oka, resp. do cca 1,5° od osy oka a zobrazují se tak na sítnici v oblasti centrální jamky (fovea centralis). Tato oblast se pak označuje jako oblast ostrého (foveálního) vidění.

Objekty nacházející se mimo tuto oblast (v oblasti parafoveální a periferní) vnímá řidič nedokonale, protože se na sítnici oka zobrazují mimo oblast centrální jamky. Hlavním úkolem periferního vidění je výběr vizuálně zajímavých a důležitých objektů, a proto pro
periferní vidění není důležitá jeho ostrost, ale rozsah, ve kterém oči dokáží na objekty reagovat.

Pro zájemce

Ověřte si rozsah svého zorného pole. Zrak směřujte vpřed, rozpažte a pohybojte pažemi mírně vpřed a vzd. Pozorujte, že oči jsou schopny pohyb paží vnější a vyhodnotit, aniž byste změnili směr úhlu pohledu. Současně si všimněte, že vidění je velmi nedokonalé. Teprve po natočení hlavy a očí ve směru některé z paží vidíte dokonalé ostře.

2.4 Jak řidič získává informace o dění v jeho okolí

Tím že dokonalé ostře může člověk a tedy i řidič, vidět jen předměty, které se nacházejí v oblasti ostrého vidění, celkový přehled o jízdní situaci si musí vytvářet i pomocí pohybů očí, hlavy, příp. těla.

Existuje několik typů očních pohybů. Každý má přesně vymezenou funkci, vlastní nervovou dráhu a řídící centrum v centrálním nervovém systému.

Podle způsobu ovládání očních pohybů se pohyby očí dělí na volní a mimovolní.

- Volní pohyby očí (tzv. pohyby „na rozkaz“) jsou vždy vyvolány vůbec člověka. Vědomě řidič natácí zrak v určitém směru, např. když se chce rozhlednout v křižovatce či v místě, kde ho o nebezpečí varují dopravní značky, nebo když směřuje zrak do zpětných zrcátek, aby zjistil situaci za vozidlem.

- Mimovolní pohyby očí (tzv. zrakem podmíněné pohyby) jsou vyvolány zraněním. Na vizuálně zajímavé podněty dokázejí oči reagovat mimovolně (reflexivně) a samy se snaží upravit svoji polohu tak, aby obraz vnímaného předmětu byl co největší a vytvořil se v oblasti fixačního centra (v oblasti centrálního jámky).

Při jízdě na většině podnětů reagují oči řidiče mimovolně. Zvláště rychle reagují na objekty, které významně mění pozorovanou situaci nebo se pohybují. Výrazný chodec, který se pohybuje, je pro oči vždy vizuálně zajímavějším podnětem než chodec, který splývá s okolím a navíc i stojí.

Výběr podnětů ovlivňuje i složitost jízdní situace, zkušenosti a také vůle řidiče. Nepřehlédněné jízdní situace proto vyžadují, aby sám řidič předvídál nebezpečí a vědomě natočil zrak do místa potenciálně nebezpečných a umožnil tím včasnou reakci očí na důležité podněty. Má-li v důležitém směru omezen výhled z vozu pevnými překážkami (např. sloupky řízeného vozidla), musí si navíc rozhled vědomě rozšířit i změnou polohy těla.

Příklad

Rozsáhlé výzkumy10 s různými zkušebními osobami dokazují, že obdobné dopravní situace a obdobné jízdní manévr vedené ke shodné strategii vizuálního pozorování.

Reakci očí řidiče na důležité podněty si prohlédněte na videu č. 3.

Nejprve si přečtěte vysvětlení k ukážce, pak si ukážku prohlédněte v návaznosti na níže uvedený popis.

Na videu směr pohledu řidiče ukazují soustředné kružnice. Menší ukazuje zaostřenější pohled řidiče, větší pohled méně zaostřený tak, aby bylo možné určit, co osoba vidí a co je schopna vnímat. Zároveň se zobrazuje čara, která reprezentuje vizuální paměť délky cca jedna sekunda (krátkodobá paměť).

Na ukázce si všimněte, že při výběru a sledování důležitých podnětů se uplatňují tzv. sakadické a hladké sledovací pohyby očí.

- Sakadické pohyby slouží řidiči především k rychlému prozkoumávání jízdní situace. Oči se vždy zaměří na určité místo a po krátké fixaci provedou rychlý pohyb (sakádu) k jinému místu, kde zůstanou na okamžik zase fixováno. Za 1 sekundu vykonají oči většinou 3 až 4 nevědomé sakády. Doba fixací pak závisí na složitosti a proměnlivosti situace.

- Hladké sledovací pohyby umožňují po proběhlé sakadě soustředěné sledování jednoho objektu v oblasti ostrého vidění, tak aby jeho obraz na sítnici byl stabilizován (nerozmazaný).

Sakadické i sledovací pohyby očí se tak uplatňují při určení směru, ve kterém se jednotlivé objekty nacházejí, při odhadu jejich vzdálenosti, při určování, zda se tyto přiblížují nebo vzdaňují i při odhadu jejich rychlosti.

Řidič během několika sakád získá informace o sklonu, zakřivení vozovky i o důležitých objektech na vozovce a jejím okolí. Následně se pak vrací k důležitým, již dříve fixovaným místům.

V ukázce uvidíte zpomalenou jízdu vozidla v členitém úseku vozovky. Řidič po vjezdu do obce postupně projíždí kolem zpomalovacího ostrůvku, místem, kde se po obou stranách vozovky nacházejí zastávky autobusů, za nimi je křižovatka a přechod pro chodce, kde zleva vstupuje do vozovky řidič.

Výše uvedené videa představují významnou příklad případu, kde řidič zpomalu projíždí kolem zpomaleného ostrůvku, místem, kde se na obou stranách vozovky nacházejí zastávky autobusů, za nimi je křižovatka a přechod pro chodce, kde zleva vstupuje do vozovky řidič.

V označeném okamžiku vidíte, jak sítnice oka řidiče periferně zaregistrovala vozidlo na levém okraji vozovky. Řidič na chodce poprvé reagoval v označení rychlosti cca 175 m před přechodem a do průjezdu vozidla přes příchod zbývalo v tomto okamžiku 16,1 s. Oči prudce změní směr pohledu k chodci, tak aby jej řidič mohl pozorovat v oblasti ostrého vidění, a následně fixace pohledu, při které řidič musí chodce rozpoznat a také zjistit, zda má v úmyslu vstoupit do vozovky. Náhle oko řidiče periferně registruje další důležitý objekt – osvětlené vozidlo přijíždějící zprava do křižovatky, a to stejnou dobu v označení 158 m před přechodem. Řidič na chodce poprvé reagoval v označení rychlosti cca 175 m před přechodem. Směr pohledu se reflexivně změnil v směru k vozidlu a následuje sledovací pohyb očí, při které řidič odhaduje rychlost vozidla. V okamžiku, kdy objekt přestává být zajímavým, protože míří v oblasti, kde rozhled na překážku omezují řidiči zastávka autobusu, se řidič rychle vračí začíná sledování se větší vzdáleností při sledování vozidla. Vozidlo se k němu vrátí právě v okamžiku, kdy vozidlo vyjíždí z oblasti, kde měl rozhled do křižovatky zakryt. Následně pak vidíme, jak i nadále dokáže...
řidič efektivně dělí svoji pozornost mezi oběma důležitými objekty, tj. mezi přecházejícím chodcem a přijíždějícím vozidlem až do okamžiku průjezdu přes přechod.

Z příkladu je zřejmé, že při jízdě řidič reaguje na velké množství podnětů. Zvýší-li rychlost jízdy, počet podnětů, na které by měl reagovat, to neovlivní, podněty však budou přicházet v rychlejším sledu a řidiči se zkrátí čas na registraci podnětů i na zpracování informací. Při velké rychlosti vozidla zákonitě dojde k tomu, že oči řidiče některý důležitý podnět nezaregistrovají nebo ho zaregistrovají pozdě, řidič pak potřebnou informaci nezíská, nebo ji získá pozdě, a nezbude mu čas na její zpracování a na změnu způsobu jízdy. Takové situace mohou mít fatální následky.

Z tohoto poměrně složitého výkladu lze učinit dva jednoduché závěry:

– V nepřehledné jízdní situaci musí řidič předvídat nebezpečí a rozhlédnout se do důležitých směrů.
– V složité jízdní situaci musí řidič zpomalit jízdu, aby měl více času na práci s informacemi.

V nepřehledné a složité situaci musí řidič udělat obojí.

Dodržování těchto zásad je zvláště důležité v době, kdy řidiči omezují rozhled světelné podmínky a musí počítat i s tím, že na objekty, které jsou za tmy málo kontrastní, budou jeho oči reagovat později než ve dne.
3 Rychlost přiměřená rozhledu při jízdě v noci po vozovce neosvětlené veřejným osvětlením

3.1 Rychlost přiměřená rozhledu podle zákona

Nejdůležitější otázka, která souvisí s jízdou v noční době, zní:

Jak rychle může jet řidič po vozovce neosvětlené veřejným osvětlením?

Zákon o silničním provozu to formuluje jasně, protože stanoví, že řidič smí jet vždy „jen takovou rychlostí, aby byl schopen zastavit vozidlo na vzdálenost, na kterou má rozhled.“

Tato formulace je zcela srozumitelná, obecně platná, neposkytuje však řidiči konkrétní návod, jakou rychlostí jet, když mu rozhled omezují světlené podmínky a vozovku osvětlují pouze světlomety vozidla.

Smutná zkušenost znalců je taková, že skoro každý řidič, který způsobil vážnou dopravní nehodu tím, že nepřizpůsobil rychlost jízdy vzdálenosti, na kterou měl rozhled, se odpočítal do soudního dvora až v soudní síni. Toho je však lépe se vyvarovat. Běžné znalosti řidičů bývají v této oblasti nedostatečné.

Teoreticky je to jednoduché. Rychlost vozidla může být jen tak vysoká, aby dráha potřebná na zastavení vozidla byla vždy kratší nebo rovna vzdálenosti, na kterou má řidič rozhled.

Máme tedy dvě veličiny

- vzdálenost, na kterou má řidič rozhled,
- dráhu potřebnou na zastavení.

O obou bude pojednáno v dalším textu.

3.2 Vzdálenost, na kterou má řidič rozhled

Odlíšení objektu od jeho okolí

11 Zákon č. 361/2000 Sb. ze dne 14. září 2000, o provozu na pozemních komunikacích, v platném znění, viz ustanovení § 18 odst. 1
12 Kontrast je bezrozměrná fotometrická veličina, která se vypočte podle vztahu \(K = |L_o - L_p| / L_p \), kde \(L_p \) je jas rozlišovaného objektu (detailu) a \(L_p \) je jas okolí (pozadí). Dobré rozlišitelnosti objektů je dosahováno při hodnotách kontrastu v rozmezí 0,5 až 0,8. Kontrast větší než 0,8 umožňuje velmi dobrou odlíšitelnost, kontrast menší než 0,5 neumožňuje dobré odlíšení.
Tab. 1: Vzájemný kontrast objektu a jeho okolí

<table>
<thead>
<tr>
<th>Pozitivní kontrast (jas objektu je větší než jas okolí)</th>
<th>Nízký kontrast (vzájemný rozdíl jasu objektu a jeho okolí je malý)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vysoký kontrast</td>
<td>Nízký kontrast</td>
</tr>
</tbody>
</table>

Za situace, kdy je schopnost oka rozlišovat barvy omezena světelnými podmínkami, je rozlišení objektů obtížnější než za dobrých světelných podmínek, protože rozdíly barev vníma lidské oko jen jako rozdíly jasů v odstínech šedi.

- Jas zdroje světla závisí především na jeho svítivosti.
- Jas ostatních objektů závisí především na jejich osvětlení a vlastnostech povrchu (jeho barvě a odrazivosti).

Čím více světla na objekt dopadá, čím lépe objekt světlo odráží, příp. čím více světla sám vyzařuje ve směru k pozorovateli, tím vyšší je jeho jas.

Pro jízdu v noci po vozovce, která není osvětlena veřejným osvětlením, je charakteristické, že jas pozadí je nízký. Je to dán o tím, že světlomety vozidla účinně osvětluji jen oblast před vozidlem, a proto nedokáží dostatečně osvětlit vzdálenější objekty na vozovce ani v jejím okolí. Na tmavém pozadí jsou pak dobře viditelné objekty s vysokým jasem. Naopak obtížné bývá odlišení objektů, které mají nízký jas.

Rozhled na objekty důležité pro jízdu

Má-li řidič přizpůsobit rychlost jízdy vzdálenosti, na kterou má rozhled, řeší dosti složitou úlohu, protože různé typy objektů může v daném okamžiku vidět při velmi rozdílných vzdálenostech od vozidla.

Dobrý rozhled však potřebuje mít především na objekty, které jsou pro jízdu skutečně důležité. Jedná se o objekty, na které musí při jízdě určitým způsobem reagovat, např. tím, že zvýší opatrnost, změnění způsob jízdy (zpomalí, zrychlí, zastaví vozidlo, změní směr jízdy) nebo i nezměněným způsobem pokračuje v jízdě. Pokud by odpovídajícím způsobem nereagoval, zvýšil by tím nebezpečí při jízdě.

Méně nebezpečné bývají pro řidiče takové důležité objekty, které může vidět na dostatečnou vzdálenost. Za viditelnosti snížené tmou se jedná především o objekty, které jsou dobře označeny světy nebo pomocí kvalitních reflexních prvků.

Naopak velmi nebezpečné jsou pro řidiče objekty, které může vidět jen na krátkou vzdálenost. Za viditelnosti snížené tmou se jedná především o objekty, které nejsou označeny zdrojem světla a při slabém osvětlení mají nízký jas.

Přizpůsobuje-li řidič rychlost jízdy vzdálenosti, na kterou má rozhled, běžně ji přizpůsobuje rozhledu na objekty, které jsou v daném okamžiku důležité pro jízdu a jsou nebezpečné tím, že je lze vidět na kratší vzdálenost než ostatní důležité objekty.
Další text se proto zaměřuje jen na problémy s neoznačenými či nedostatečně označenými objekty a zvláštní pozornost je věnována chodcům.

Rozhled na chodce

Při jízdě si řidič musí uvědomovat, že zvláště zranitelnými účastníky silničního provozu jsou chodci. Tito nejsou v silničním provozu nijak chráněni a s výjimkou dálnic a silnic pro motorová vozidla se mohou pohybovat po silnicích. Z pohledu řidiče se proto jedná o překážky, které může předvidat a řidič by tak měl mít jasnou představu o tom, na jakou vzdálenost může chodce uvidět, když při jízdě použije světla potkávací nebo dálková.

Příklad

Na obrázcích je porovnána viditelnost chodců v bílém, černém a v různobarevném oblečení při použití potkávacích světel. Porovnány jsou situace, kdy chodci jsou stejně vzdáleni od vozidla a jsou tak stejně intenzivně osvětleni. Obrázky ukazují, že při stejném osvětlení má vždy největší jas chodec v bílém oblečení a nejmenší jas chodec v černém oblečení.

Při vzdálenosti 80 m (obr. 10) jsme schopni rozpoznat nohy chodce bíle oblečeného. Při vzdálenosti 50 m (obr. 11) vidíme i nohy chodce v barevném oblečení. U bíle oblečeného chodce však již rozeznáváme i trup a ruce. Teprve při vzdálenosti 40 m (obr. 12) jsme schopné uvidět nohy chodce černě oblečeného. U chodce v bílém oblečení již vidíme celou postavu, u chodce v barevném oblečení začínáme rozeznávat trup.

Prohlédněte si též video, které v reálných jízdních situacích ukazuje přímo reakci řidiče na chodce, a to při použití potkávacích světel. V první ukázce má chodec oblečení bílé, v druhé černé.

Příklad

Stejně jako v ukázce ke kapitole 2.4 směr pohledu řidiče ukazují soustředné kružnice. Menší ukazuje zaostřenější pohled řidiče, větší pohled méně zaostřený.

V případě bílé oblečeného chodce řidič poprvé opticky reaguje na chodce na vzdálenost 78 m, v čase 4 s před chodcem.

V případě černě oblečeného chodce ho dokáže poprvé registrovat jen na vzdálenost 32 m, v čase 1,4 s před chodcem. Řidič má mnohem méně času a musí okamžitě jednat.
Z obou příkladů je zřejmé, jak barva a odrazivost povrchu objektu významně ovlivňuje vzdálenost, při které je schopen řidič objekt odlišit od jeho okolí.

Z výsledků experimentálních zkoušek realizovaných v běžném silničním provozu lze konstatovat, že zkušený a pozorný řidič s dobrou ostrostí zraku a s dobrou kontrastní citlivostí dokáže v běžných jízdních situacích registrovat chodce, který se pohybuje při pravém okraji vozovky tak, jak je v přehledu uvedeno v tabulce 2.
Tab. 2: Obvyklé vzdálenosti, při kterých dokáže oko řidiče registrovat chodce, který se pohybuje při pravém okraji vozovky

<table>
<thead>
<tr>
<th>Chodec v bílém oblečení</th>
<th>Světla potkávací</th>
<th>Světla dálková</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i více než 70 m</td>
<td>ne více než 120 m</td>
</tr>
<tr>
<td>Chodec v různobarevném oblečení</td>
<td>50 až 70 m</td>
<td>75 až 110 m</td>
</tr>
<tr>
<td>Chodec v černém oblečení</td>
<td>30 až 40 m</td>
<td>ne více než 70 m</td>
</tr>
</tbody>
</table>

Jestliže výše bylo konstatováno, že oči řidiče samy dokáží reflexivně reagovat na důležité podněty, řidič si musí uvědomit, že při použití potkávacích světel se u málo kontrastních překážek jedná jen o několik desítek metrů. Při vyšší rychlosti vozidla je taková vzdálenost pro zastavení nedostatečná.

Pro zájemce

Mnohým se výše uvedené vzdálenosti mohou zdát krátké. Je však vhodné s nimi uvažovat jako s mezními. Za příznivých podmínek může lidské oko na chodce reagovat i dříve, tedy na větší vzdálenosti než výše, za nepříznivých právě naopak.

Dřívější detekce chodce může napomoci:
- houpání vozidla – střídavé nasvětlení chodce v důsledku houpání vozidla vyvolá dynamičtější podnět, na který lidské oko reaguje dříve,
- kontrastní pozadí – bude-li např. tmavě oblečený chodec stát na horizontu a pozadí bude tvořeno jasnou oblohou, vznikne lepší kontrast než vůči tmavé vozovce.

Nepříznivé detekce chodce ovlivňují zejména:
- trajektorie chodce – u potkávacích světel bude situace tím horší, čím blíže ke středu vozovky chodec půjde,
- bude-li chodec stát – běžně upoutá pozornost řidiče později, než když chodec půjde.

Starší řidiči si navíc musí uvědomit, že s věkem se přirozeně zhorší nejen ostrost zraku, ale i kontrastní citlivost očí. Oči staršího člověka nedokáží dobře rozlišit malé rozdíly jasů, a proto na málo kontrastní překážku běžně zareagují později než oči zdravého mladého řidiče (brýle korigují jen zrakovou ostrost).

3.3 Dráha potřebná na zastavení

Doba potřebná na zastavení

Při jízdě si řidič musí uvědomovat, že v okamžiku, kdy bude muset zastavit vozidlo, bude na to potřebovat čas on i vozidlo.

Od okamžiku prvního spatření překážky, tj. od okamžiku registrace překážky sítnicí oka, potřebuje řidič čas na13:
- převedení podnětu do místa nejostřejšího vidění oka a na aktivaci centrální nervové soustavy – reakce optická,
- rozpoznání objektu v centrální nervové soustavě, rozhodnutí se o způsobu reakce na podnět a na aktivaci svalové soustavy – reakce psychická,

provení výkonných činností a aktivaci brzdového pedálu – reakce svalová.

Součet doby opticke, psychické a svalové reakce pak dává celkovou reakční dobu řidiče. Její délka závisí na mnoha faktorech, především na směru pohledu řidiče a poloze překážky, vlastnostech překážky, světelných podmínkách, pozornosti řidiče, únavě řidiče atd. I při pozorné jízdě musí řidič počítat s dobou nejméně jedné sekundy, v noci i více.

U nekontrastního podnětu a staršího řidiče se reakční doba může prodloužit i na dobu delší než tři sekundy.

Vozidlo pak potřebuje čas na brzdění, tj.:
- na náběh brzdného účinku a plnou aktivaci brzdové soustavy (odezva vozidla),
- na brzdění do zastavení (doba brzdění).

Doba potřebná na brzdění závisí především na vlastnostech brzdové soustavy vozidla, rychlosti vozidla a adhezních podmínkách.

Dráha na zastavení

Během reakční doby řidiče i při samotném brzdění se vozidlo až do okamžiku zastavení stále pohybuje. Nejmenší vzdálenost, kterou při tom za daných podmínek může urazit, se označuje jako dráha potřebná na zastavení vozidla (dále jen dráha na zastavení). Délka dráhy na zastavení závisí především na:
- rychlosti vozidla,
- reakční době řidiče a
- adhezních podmínkách.

Čím je rychlost vozidla vyšší, čím delší je reakční doba řidiče, čím horší jsou adhezní podmínky (klouže to), tím delší je dráha na zastavení. Podle okolností může být i značně dlouhá.

Řidič by si měl uvědomit dvě podstatné skutečnosti.

1. Během celé reakční doby řidiče se vozidlo pohybuje nezměněnou rychlostí. Značnou dráhu tak vozidlo urazí, aniž by se snížila jeho rychlost.

2. Dráha, kterou vozidlo urazí při samotném brzdění, se prodlužuje s druhou mocninou rychlosti. Pokud při dané rychlosti brzdá dráha vozidla odpovídá vzdálenosti , při dvojnásobné rychlosti bude tato (2^2 = 4) větší, při trojnásobné rychlosti (3^2 = 9) větší a při čtyřnásobné rychlosti (4^2 = 16) větší.

Příklad

Porovnejme dráhu potřebnou na zastavení na rovném úseku vozovky při počátečních rychlostech vozidla .

Během reakční doby , vozidlo jede konstantní rychlostí. Dráha ujedná během reakční doby , se vypočítá podle vzorce , . Rychlost vozidla je nutno ve všech výpočtech dosazovat v m/s, tedy rychlost v km/h podělit číslem 3,6 (hodina má 3 600 s, 1 km má 1 000 m, 3 600/1 000 = 3,6). Uvažujeme-li s reakční dobou řidiče , což představuje skutečně rychlou reakci řidiče, pak při rychlosti km/h (8,3 m/s) ujede vozidlo cca 8 m, při rychlosti km/h (25,0 m/s) ujede 25 m.

a při rychlosti 120 km/h (33,3 m/s) ujede cca 33 m. Značnou vzdálenost tak vozidlo urazí již během reakční doby.

Zanedbáme-li dobu potřebnou na náběh brzdného účinku, brzdná dráha se vypočte podle vztahu \(s_a = \frac{v_0^2}{2a} \), kde a je dosažitelné brzdné zpomalování v daném úseku vozovky. Uvažujeme-li a = 8 m/s², což je skutečně prudké brzdění možné jen za dobrých podmínek, při rychlosti 30 km/h bude délka brzdné dráhy cca 4 m (přesněji 4,34 m), při dvojnásobné rychlosti 60 km/h je to již 17 m, tedy 4x více, při trojnásobné rychlosti 90 km je to již 39 m, tedy 9x více a při čtyřnásobné rychlosti 120 km/h je to již 69 m, tedy 16x více.

Součet obou úseků vyjadřuje již dobrý odhad dráhy na zastavení \(s'_z \). Při rychlosti 30 km/h tato bude cca (8 + 4 =) 12 m, při rychlosti 60 km/h cca (17 + 17 =) 34 m, při rychlosti 90 km/h cca (25 + 39 =) 64 m a při rychlosti 120 km/h cca (33 + 69 =) 102 m. Ve skutečnosti by brzdná dráha \(s_z \) byla o něco delší, protože jsme zanedbali dobu potřebnou na náběh brzdného účinku, kdy vozidlo brzdí s menší účinností.

Skutečná dráha na zastavení \((s_z) \) je součtem úseků, kterou vozidlo ujede během reakční doby řidiče \(s_r \) v průběhu náběhu brzdného účinku \(s_a \) a při vlastním brzdění s plným brzdným účinkem \(s_b \). V přehledu jsou tyto pro různé podmínky uvedeny v tabulce 3.

Tab. 3: Délka dráhy potřebné na zastavení vozidla pro různé adhezní podmínky v závislosti na rychlosti vozidla (reakční doba řidiče \(t_r = 1 \) s, doba náběhu brzdného účinku \(t_a = 0,2 \) s, dosažitelné brzdné zpomalování \(a_b \) dle údajů v tabulce) – orientační hodnoty

<table>
<thead>
<tr>
<th>Rychlost vozidla [km/h]</th>
<th>Suchá vozovka (a_b = 8) m/s²</th>
<th>Mokrá vozovka (a_b = 5) m/s²</th>
<th>Zasněžená vozovka (a_b = 3) m/s²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(s_r) (s_n) (s_b) (s_z)</td>
<td>(s_r) (s_n) (s_b) (s_z)</td>
<td>(s_r) (s_n) (s_b) (s_z)</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>60 (2x větší)</td>
<td>17</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>90 (3x větší)</td>
<td>25</td>
<td>5</td>
<td>37</td>
</tr>
<tr>
<td>120 (4x větší)</td>
<td>33</td>
<td>7</td>
<td>66</td>
</tr>
</tbody>
</table>

Při brzdění z kopce se dráha na zastavení ještě prodlouží, při brzdění do kopce naopak zkrátí.

Pro zájemce

3.4 Rychlost jízdy přiměřená rozhledu

Rychlost přiměřená rozhledu na chodce

Protože zvlášť zranitelnými účastníky silničního provozu jsou chodci, je vhodné při přepnutí na potkávací světla přizpůsobit rychlost vozidla právě rozhledu na chodce.

Výjimkou mohou být dálenice a silnice pro motorová vozidla, na kterých je pohyb chodců zakázán. I na těchto komunikacích však mohou vzniknout situace, kdy bych se mohla stát překážka pro chodce. Je proto důležité při přepnutí na potkávací světla přizpůsobit rychlost vozidla právě rozhledu na chodce.

Rychlost přiměřená rozhledu na chodce jsou pro světla potkávací a dálkové vypočteny v tabulce 4.

U dálkových světel vidíme, že oči řidiče jsou na chodce povětšinou schopné reagovat na dostatečnou vzdálenost. Pojede-li řidič nejvyšší povolenou rychlosti (90 km/h), dokáže před chodcem zastavit, resp. by případně dokázal zastavit i z rychlostí vyšší.

Opačně je tomu u světel potkávacích. Má-li chodec různobarevné oblečení, zdravé lidské oko jej na chodce někdy dokáže detekovat až na vzdálenost cca 50 m. Aby řidič na této vzdálenosti dokázal zastavit, musí již říjen lidí, aby řidič před chodcem již nedokázal zastavit.

Použijí-li však chodce oblečení vhodné pro zastavení vozidla, může řidič zastavit na vzdálenost cca 30 m až 40 m.

Tabulka 4: Rychlost přiměřená rozhledu při použití potkávacích a dálkových světel – orientační hodnoty

<table>
<thead>
<tr>
<th>Oblečení</th>
<th>Potkávací světla</th>
<th>Dálková světla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vzdálenost, na kterou je chodec vidět</td>
<td>Rychlost přiměřená rozhledu</td>
<td>Vzdálenost, na kterou je chodec vidět</td>
</tr>
<tr>
<td>Bílé</td>
<td>cca 70 m</td>
<td>cca 85 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Různobarevné</td>
<td>cca 50 m</td>
<td>cca 70 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Černé</td>
<td>cca 30 m</td>
<td>cca 50 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Méně kvalitní bezpečnostní vesta</td>
<td>cca 100 m</td>
<td>více než 90 km/h (cca 105 km/h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15 Uvažováno jako rychlost, ze které lze vozidlo bezpečně zastavit na suché vozovce, reakční doba 1 s, průměrné zpomalení 6 m/s².
Pro zájemce

Přibližný výpočet rychlosti přiměřené rozhledu není nijak složitý. Uvažujme, že oko řidiče dokáže chodce, který má různobarevné oblečení, zaregistrovat na vzdálenost \(s = 50 \text{ m} \).

V daném místě je dosažitelné brzdné zpomalení \(a = 6 \text{ m/s}^2 \), reakční doba \(t_r = 1 \text{ s} \).

Rychlost přiměřená se vypočte podle vztahu

\[
v = -a \cdot t_r + \sqrt{a^2 \cdot t_r^2 + 2 \cdot a \cdot s} = -6 \cdot 1 + \sqrt{6^2 \cdot 1^2 + 2 \cdot 6 \cdot 50} = 19,2 \text{ m/s} = 69 \text{ km/h}
\]

Ve výpočtu opět zanedbáváme dobou potřebnou na náběh brzdného účinku a také vliv sklonu vozovky. Při brzdění z kopce se brzdná dráha prodlužuje, takže přiměřená rychlost je nižší, do kopce naopak.

Jakou rychlostí jet při použití potkávacích světel

Výše uvedené lze z praktického hlediska shrnout takto:

Není-li řidič dostatečně informován o situaci před vozidlem, při přepnutí na potkávací světla musí snížit rychlost alespoň na 50 km/h.

Uvedené platí pro dobré podmínky (dobré atmosférické podmínky, čistá a suchá vozovka). Za zhoršených podmínek musí řidič snížit rychlost ještě více.

Možná vás výše uvedené doporučení překvapilo. Každý řidič by si však měl uvědomit, že v okamžiku, kdy přepne na potkávací světla, jsou jeho oči schopny běžně reagovat na chodce v různobarevném oblečení na vzdálenost v rozmezí 50 až 70 m. Nejvyšší povolená rychlost mimo obec (s výjimkou dálencí a silnicí pro motorová vozidla) je 90 km/h, tedy 25 m/s. Jede-li řidič touto rychlostí, pak vzdálenost 50 až 70 m ujede jeho vozidlo za dobu 2 až 2,8 s. Tato doba je však zcela nedostatečná na rozpoznání chodce, rozhodnutí řidiče o způsobu reakce a na přizpůsobení způsobu jízdy, především na zastavení vozidla.16

Situací s chodci může zlepšit zavedení povinnosti chodců používat reflexní prvky na oblečení. Hodně bude záležet na velikosti a odrazivých vlastnostech reflexních prvků, které budou chodci používat. Do té doby je však nutno počítat i s tím, že po vozovce může kráčet chodec celý v černém bez jakéhokoliv označení a nemusí řidiči uvolnit koridor jízdy.

Pro zájemce

Každý řidič se po opuštění vozidla stává i chodcem. Jako poučený chodec by proto měl dbát na svoji bezpečnost i na bezpečnost svých dětí a většinou dospělých. Chodci by měli po právě opuštěném vozidle stávajícím na pozemní komunikaci souvisle upozorňovat na to, že stávající vozidlo je opuštěné, aby byly oba pravidla dodržována.

Jaké důsledky může mít nepřizpůsobení rychlosti jízdy rozhledu

Případně důsledky nepřizpůsobení rychlosti jízdy rozhledu jsou zřejmé z následujících obrázků. Obrázky 13 až 15 znázorňují podobnou jízdní situaci. Řidič jede po rovném úseku vozovky rychlostí 90 km/h při použití potkávacích světel. Chodce jde v jeho pravém jízdním pruhu a vytvoří mu překážku, před kterou musí zastavit.

V prvním případě má chodec reflexní bezpečnostní vestu, řidič na něj dokáže reagovat ve vzdálenosti 100 m a může tak zastavit ve vzdálenosti 36 m před chodem.

16 Zákon č. 361/2000 Sb. ze dne 14. září 2000, o provozu na pozemních komunikacích, v platném znění, viz ustanovení § 18 odst. 1 „smí jet jen takovou rychlostí, aby byl schopen zastavit vozidlo na vzdálenost, na kterou má rozhled.“
V druhém případě má chodec různobarevné oblečení bez reflexních prvků, řidič na něj dokáže reagovat ve vzdálenosti 50 m, nedokáže před chodcem zastavit, vozidlo do chodce naráží při rychlosti cca 54 km/h, délka odhození chodce bude cca 20 m, pravděpodobnost jeho přežití je cca 10 %.

Ve třetím případě má chodec černé oblečení bez reflexních prvků, řidič na něj dokáže reagovat ve vzdálenosti 30 m, nedokáže před chodcem zastavit, vozidlo do chodce naráží při rychlosti cca 84 km/h, délka odhození bude větší než 30 m, pravděpodobnost přežití chodce je 0 %.

Obr. 13: První jízdní situace – chodec v bezpečnostní vestě, rychlost vozidla 90 km/h, řidič reaguje ve vzdálenosti 100 m – vozidlo zastaví 36 m před chodcem

Obr. 14: Druhá jízdní situace – chodec v různobarevném oblečení bez reflexních prvků, rychlost vozidla 90 km/h, řidič reaguje ve vzdálenosti 50 m – náraz do chodece při rychlosti cca 54 km/h, délka odhození chodce cca 20 m, pravděpodobnost přežití chodce cca 10 %

Obr. 15: Třetí jízdní situace – chodec v černém oblečení bez reflexních prvků, rychlost vozidla 90 km/h, řidič reaguje ve vzdálenosti 30 m – náraz do chodece při rychlosti cca 84 km/h, délka odhození více než 30 m, pravděpodobnost přežití chodce 0 %

Ve všech simulacích je uvažováno s reakční dobou 1 s a zpomalením vozidla 8 m/s², tedy skutečně intenzivní brzdění. V nestandardních situacích – starší řidič, špatné podmínky, nestandardní složitá jízdní situace, se za tmy může reakční doba řidiče prodloužit i na 2 až 3 s a při zhoršených adhezních podmínkách může výrazně klesnout i hodnota dosažitelného zpomalení vozidla.

Není-li řidič dostatečně informován o situaci před vozidlem, při přepnutí na potkávací světla nemůže pokračovat v jízdě nejvyšší povolenou rychlostí.
3.5 Co může přinést novela pravidel silničního provozu

Pro zájemce

Tato kapitola je označena jako pro zájemce. Důvodem je, že v době přípravy tohoto textu byla změna zákona ve vztahu k chodcům schválena vládou, nebyla však ještě projednána a schválena ve sněmovně a dalších orgánech. Pochopitelně tak nebyly ani k dispozici žádné zkušenosti s dodržováním nové právní úpravy ani z rozhodování soudů.

Podle připravované novely pravidel silničního provozu by chodci měli mit povinnost používat alespoň jeden reflexní prvek na oděvu, pokud jdou za snížené viditelnosti po vozovce bez veřejného osvětlení. Takové opatření je vitané a jistě dokáže zabránit některým nehodám. Je potřebné si uvědomit, že běžně dostupné reflexní pásky umístované na rameni také zřejmě splní kritérium, které je uvedeno v návrhu zákona, tedy „viditelnosti zepředu a zezadu a dostatečné velikosti“. Řidiči by si měli uvědomit, že reflexní pásek má poměrně malou plochu a nezvýrazňuje siluetu chodce. Řidiče upozorní na podnět cca o 10 až 20 m dříve. Při nižší rychlosti je toto ovlivnění velmi příznivé, není však dostatečné pro to, aby řidiči mohli při potkávacích světlech jezdit rychlostí 90 km/h.

Pokud by se chodci ztotožnili s zásadou „být viděn“, a začali by používat dostatečně velké reflexní prvky s dobrou odráživostí nebo kvalitní bezpečnostní vesty, situace by se pro řidiče významně zlepšila. V opačném případě bude nutno i nadále jezdit velmi obezřetně, zvláště při použití potkávacích světel. Řidiči si musí uvědomit, že prvky s malou reflexní plochou umístěné na částech těla, které se výrazně pohybují, nejsou pro oči řidiče vizuálně výrazným podnětem, na který by při potkávacích světelech dokázal s jistotou reagovat na značnou vzdálenost. Bude-li novela zavedena, obezřetnost bude stále na místě, a to minimálně do doby, než budou známy zkušenosti s jejím praktickým dodržováním a posuzováním odpovědnosti řidičů za situaci, kdy chodce povinnost nesplní.

Významně by mohla pomoci i povinnost chodců uvolnit koridor jízdy přijíždějícímu vozidlu. Chodci světla vozidla běžně vidí na velmi značnou vzdálenost. Jinou možností je, aby chodci povinně používali bezpečnostní vesty (odhlíží se od praktického hlediska). Vesty dostupné na trhu se liší svoji kvalitou, ale i chodce v ne příliš kvalitní vestě lze při použití potkávacích světel vidět až na vzdálenost 80 m až 120 m, v kvalitní vestě na vzdálenost ještě větší. Na různou kvalitu vest upozorňuje obr. 16.

Obr. 16: Rozdílná kvalita bezpečnostních vest

4 Péče o vozidlo a aktivní bezpečnost

4.1 Před jízdou věnujte pozornost svému vozidlu

Zásada vidět a být viděn

Na silnici musí řidič dodržovat známou zásadu „vidět a být viděn“, a to zvláště za situace, kdy on i další účastníci silničního provozu mají rozhled omezen světelnými podmínkami. S tím souvisí i péče o vozidlo. Před jízdou i v průběhu jízdy musí řidič věnovat pozornost světlům vozidla a dalším prvkům, které zlepšují viditelnost vozidla.

Na vozidle musí řidič udržovat v čistém a bezvadném stavu:

- světlomety (světla potkávací, dálková, do mlhy, rohová a zpětná), které slouží primárně k osvětlení vozovky a zajišťují proto především možnost „vidět“, světliny (světla směrová, výstražná, obrysová, koncová a denní), které primárně vysílají světelný signál ostatním účastníkům silničního provozu a zajišťují proto především možnost „být viděn“, další prvky (odrazky, reflexní fólie vytvářející tzv. nápadné obrysové značení apod.), které zajišťují především možnost „být viděn“ z různých směrů, zvláště při vypnutých světlech.

- V této souvislosti musí na vozidle udržovat v čistém a bezvadném stavu světlomety, světliny i další prvky vozidla, které zlepšují viditelnost vozidla zvláště při vypnutých světlech.

Vliv znečištění na viditelnost vozidla ukazují obr. 17 až 20. Obr. 17 ukazuje způsob znečištění. Levá polovina návěsu je čistá, pravá výrazně znečištěná. Na obr. 18 až 20 vidíme takto znečištěné vozidlo odstavené na kraji vozovky. Díky reflexním prvkům, které zvýrazňují obrysy vozidla, je levá (čistá) část dobře viditelná na vzdálenost 100 m, a to i při použití potkávacích světel (viz obr. 18). Části bez reflexních prvků lze rozlišit jen na vzdálenost 40 m (viz obr. 19). Při použití potkávacích světel však stále nelze rozlišit pravou stranu vozu. Obrysy pravé části lze od okolí odlišit až při použití dálkových světel a to stále jen nezřetelně (viz obr. 20).
Správné nastavení světlometů

Jen málo řidičů správně používá regulaci sklonu světlometů v závislosti na zatížení vozidla. Zatížení vozidla však významně ovlivňuje jeho sklon a tedy i sklon světlometů vůči vozovce a tím i velikost osvětlené oblasti před vozidlem.

Má-li řidič vozidlo s ručním nastavením světlometů, musí před jízdou jejich sklon nastavit podle aktuálního zatížení osobami a nákladem. Základní poloha ovladače odpovídá zatížení vozidla řidičem, příp. řidičem a spolujezdcem.

- Bude-li vozidlo zatíženo vzadu a řidič ponechá základní nastavení, světlomety budou svítit vůně, než by měly a vůz bude ošlňovat řidiče protijedoucích vozidel. Tito
se mohou hůře orientovat na vozovce a vyjet mimo vozovku nebo přejet do protisměrného jízdního pruhu.

- Bude-li vozidlo zatíženo jen vpředu a řidič ponechá nastavení světlometů pro větší zatížení, budou světlomety svítit niž, než by měly a řidič si významně zkrátil osvětlenou oblast před vozidlem. Zvyšuje se tak nebezpečí, že srazí chodce či narazí do neosvětlené překážky.

V obou případech se zvyšuje riziko vzniku dopravní nehody.

Některá moderní vozidla upraví sklon světlometů podle zatížení automaticky, popsaná starost pak řidiči odpadá.

Pro zájemce

Regulace sklonu světlometů bývá zpravidla umístěna v blízkosti spínače světlometů. Položka 0 odpovídá obsazení vozidla řidičem, příp. řidičem a spolujezdcem. Jsou-li vzadu ve vozidle přepravovány další osoby, příp. je vozidlo zatíženo nákladem, je nutno použít nastavení I, II, někdy i III podle návodu k obsluze a zatížení vozidla.

Výhled z vozidla

Se zásadou „vidět“ souvisí i výhled z vozidla, který by si řidič neměl zbytečným způsobem dále omezovat.

Zvláště pro jízdu v noci je důležité udržovat v čistotě všechna skla včetně ploch, nestíraných stěračů. Samozřejmě, že na čelní sklo nepatří nesvětelné nálepky, na vnější zpětové zrcátko ani osvětlující střomky

V noční době je zvláště důležité, aby řidič ani další osoby neinstalovali do vozidla žádné zařízení, která by byla zbytečným zdrojem světla v kabíně vozidla a při jízdě by narušovala adaptaci zraku řidiče na tmu (týká se všech displejů vč. videi, TV přijímačů v blízkosti zorného pole řidiče apod.).

Nouzové stání

Zásada „být viděn“ platí i při nouzovém stání. Řidič musí počítat i s možností, že bude okolnostmi nucen nouzově zastavit vozidlo na vozovce či krajnici.

Na vozidle musí mít plně funkčně výstražné a obrysové svítilny. Před opuštěním vozu musí použít bezpečnostní vestu. Ta by proto měla být dostupná z kabíny vozu. Po zastavení bude muset odstavené vozidlo označit výstražním trojúhelníkem a nejlépe i aktivním zdrojem světla. Výstražný trojúhelník musí mít také dostupný a nikoliv ukryt pod všemi zavazadly.

Příklad neoznačeného vozidla, které po předchozí dopravní nehodě zůstalo stát uprostřed jízdních pruhů, si můžete prohlédnout na obrázku 21.

Při nouzovém stání je vždy vhodné, aby vozidlo opustily všechny osoby a na pomoc vyčkaly v bezpečí mimo vozovku. Řidič by si měl proto ověřit, že vůz je vybaven potřebným počtem bezpečnostních vest i pro zbytek posádky. Pro cestu do některých zemí se jedná o povinnou výbavu.

Nehody vzniklé v důsledku nárazu do neosvětleného vozidla a kolize s posádkou při opouštění vozidla patří k nehodám s velmi závažnými následky.

18 Vyhláška 341/2014 Sb. ze dne 9. prosince 2014, v platném znění, o schvalování technické způsobilosti a o technických podmínkách provozu vozidel na pozemních komunikacích, „...v zorném poli řidiče nesmí být umístěny žádné předměty, které by omezovaly výhled řidiče všemi směry ...“
4.2 Co dnes auta umí

Aktivní a pasivní bezpečnost

V souvislosti s vozidlem a jízdou za tmy je vhodné upozornit i na některá řešení, která řidiči pomáhají vidět a nevidí-li, pomáhají mu zabránit nehodě či alespoň minimalizovat její důsledky.

Výrobci automobilů investují velké finanční prostředky na zvýšení bezpečnosti motorových vozidel. Ve vývoji se rozlišuje mezi bezpečností aktivní a pasivní.

- **Opatření v oblasti pasivní bezpečností** slouží k minimalizaci následků dopravních nehod v případech, kdy k nehodě skutečně dojde.
- **Opatření v oblasti aktivní bezpečností** slouží ke snížování pravděpodobnosti vzniku dopravních nehod a napomáhají tomu, aby k nehodám pokud možno vůbec nedocházelo.

Nikdo zřejmě nepochybuje o významu prvků pasivní bezpečnosti, jako jsou bezpečnostní pásy, airbagy, karoserie a další části vozidla řešené tak, aby při nárazu pohltily značnou část energie a zajistily posádce prostor pro přežití.

Ne všichni řidiči však stejný význam dávají prvkům bezpečnosti aktivní.

Při jízdě v noci aktivní bezpečnost zvyšují především kvalitní světlo a dovednější řidiče.

Při jízdě v noci aktivní bezpečnost zvyšují především kvalitní světlo a dovednější řidiče.

S tím souvisí jak vývoj používání zdrojů světla, tak i samotné konstrukce světometů.
Kvalitní světlomety jako důležitý prvek aktivní bezpečnosti při jízdě v noci

Vyplatí se mít dobré světlomety, tyto dnes používají čiré sklo a vhodného rozložení světla se dosahuje nepravidelným tvarem reflektoru (koncept „free-form” – FF).

Moderní světlomety s automatickou regulací sklonu umí sklon světlometů nastavit podle zatížení vozidla, dynamická regulace umí sklon světlometů přizpůsobovat i v závislosti na změnách sklonu karoserie při jízdě.

Některé moderní světlomety umí regulovat velikost osvětlené oblasti podle rychlosti vozidla, natočení volantu a zapnutí směrových světel. Jedná se o tzv. systémy adaptivních světlometů (AFS, Adaptive Frontlight System), které při vyšší rychlosti osvětluji větší oblast než při nízkých rychlostech. Zvláštní režim je pro dálnici a pro město. Světlo se usměrňuje podle směru jízdy. Při odbočování se rozšíří osvětlená oblast aktivací rohových světlometů (funckce corner).

Vyvíjí se i světlomety, které umí ztlumit světlo ve směru protijedoucích vozidel a nevyžadují proto přepínání světel dálkových a potkávacích (systémy DLA, Dynamic Light Asist). Tyto fungují tak, že se odstíněn je světlo ve směru protijedoucích, popř. vpředu jedoucích vozidel a zbytek vozovky před vozidlem zůstává osvětlen jako při použití dálkových světel.

Další prvky zvyšující aktivní bezpečnost při jízdě v noci

Dalšími prvky, které zvyšují aktivní bezpečnost při jízdě v noci, jsou u moderních vozidel:

- systémy pro noční vidění,
- systémy pro rozpoznání chodců a také
- systémy pro autonomní brzdění pro případy, kdy řidič sám nezareaguje na překážku v silničním provozu.

Podceňovat nelze ani komfort řidiče, který přispívá k minimalizaci jeho únavy.
5 Jízda za viditelností snížené tmou

5.1 Jízda v obci a po vozovce osvětlené veřejným osvětlením

Používání světlometů na vozovce osvětlené veřejným osvětlením

Používání světlometů za snížené viditelnosti, tedy i za snížené viditelnosti tmou (tj. v noci, za soumraku příp. za svítání), upravuje zákon č. 361/2000 Sb. v § 32, odst. 2 a 3 takto:

§ 32

(2) Vozidlo musí mít za jízdy při snížené viditelnosti rozsvícena obrysová a potkávací nebo dálková světla, pokud je jimi vybaveno podle zvláštního právního předpisu.

(3) Řidič nesmí užít dálková světla, je-li vozovka dostatečně a souvisle osvětlena nebo mohli by být oslněn řidič protijedoucího vozidla, řidič vozidla jedoucího před ním nebo jiný účastník provozu na pozemních komunikacích,...

Protože řidič musí světla používat v souladu se závaznými ustanoveními zákona, musí si dobře všimnout, jak je vozovka osvětlena.

Pokud lampy veřejného osvětlení vozovku osvětluji dostatečně a souvisle, je řidič povinen použít světla potkávací.

V opačném případě je vhodné, aby použil světla dálková,

Pokud řidiči hustota provozu neumožňuje použít světla dálková, musí zvýšit opatrnost a většinou i zpomalit jízdu.

Přizpůsobení jízdy světelným podmínkám

Řidič si musí uvědomit, že i na vozovce, která je za tmy osvětlena lampami veřejného osvětlení, má rozhled významně omezen světelnými podmínkami. Ty ovlivňují rozhled řidiče především za situace, kdy je vozovka osvětlena nedostatečně či nesouvisle a řidič nemůže použít světla dálková.

K nedostatečnému osvětlení vozovky dochází typicky při jednostranném osvětlení komunikace, kdy nedostatečně může být osvětlen celý jízdní pruh.

K nesouvislému osvětlení vozovky dochází typicky za situace, kdy jsou použity velké rozestupy mezi lampami veřejného osvětlení, což se na vozovce projevuje střídáním světlých a tmavých míst. Ostré hranice světla a tmy někdy vytváří i moderní osvětlení LED lampami.

Na vozovce s veřejným osvětlením se řidič většinou dokáže dobře orientovat i při nedostatečném a nesouvislém osvětlení vozovky. Horší světelné podmínky však vždy zhoršují rozhled řidiče především na objekty bez vlastního osvětlení.

Při nedostatečném a nesouvislém osvětlení vozovky musí řidič zvýšit opatrnost, příp. zpomalit jízdu. Jsou-li na vozovce úplně tmavá místa, měl by si uvědomit, že případnou neosvětlenou či špatně osvětlenou překážku uvidí až po jejím osvětlení světlomety vozidla, tedy při použití potkávacích světel, jen na krátkou vzdálenost.

Zákon č. 361/2000 Sb. ze dne 14. září 2000, o provozu na pozemních, v platném znění, viz ustanovení § 32, odst. 2 a 3
Řidič si dále musí uvědomit, že i na vozovce osvětlené veřejným osvětlením mívá významně omezen rozhled na okolí komunikace. V zastavěných částech obcí se jedná především o chodníky, což je zvláště nebezpečné, protože se na nich pohybují chodci. Řidič si tak musí uvědomit, že ve dne může rozpoznat úmysl chodce vstoupit do vozovky běžně již na chodníku. V noci, kdy mu rozhled omezují světelné podmínky, to může být až v okamžiku, kdy chodec nakračuje do vozovky nebo se na ní již nachází.

Zvýšit opatrnost, příp. zpomalit jízdu musí řidič v blízkosti míst s vyšší koncentrací chodců, jako jsou školy, turisticky zajímavá místa, obchody, restaurační zařízení, nádraží, sportoviště apod.

Zvláště v noční době musí řidič pečlivě sledovat i dopravní značení, aby za situace, kdy mu světelné podmínky omezují rozhled, byl o potenciálním nebezpečí varován v předstihu.

Zvýšit opatrnost musí řidič především v místech dopravních značek přechod pro chodce, děti, cyklisté, práce, zastávka autobusu, tramvaje, trolejbusu, přejezd pro cyklisty, stezka pro chodce, stezka pro cyklisty.

Jízda kolem přechodu pro chodce

Na přechodech pro chodce je zvláště nebezpečné, protože se na nich pohybují chodci.

Jízda kolem zastávek hromadné dopravy

Zastávky hromadné dopravy jsou i nebezpečným místem. Řidič si měl by uvědomit, že cyklisté se dokáží pohybovat značnou rychlostí, přitom zdroje světla, které používají, jsou mnohem slabší než u motorových vozidel. Při umělém osvětlení neje机型 běžně přehlédnout.
Zvláště nebezpečná jsou pak taková místa, kde řidič kříží vyhrazený jízdní pruh pro cyklisty. Ten je např. vytvořen při pravém okraji vozovky a řidič ho musí při odbočení vpravo překřížit. Tím, že cyklista může jet značně rychle, přitom je špatně vidět na velkou vzdálenost, musí jet řidič velmi opatrně a musí se pečlivě rozhlednout daleko za vozidlo. Při křížení vyhrazeného pruhu se nemůže spoléhat jen na zpětná zrcátka.

Při jízdě v blízkosti stezek a vyhrazených jízdních pruhů pro cyklisty musí řidič zvýšit opatrnost. Zvláště obezřetně musíjet tam, kde bude křížit vyhrazený pruh nebo v místech, kde vyúsťují stezky pro cyklisty.

V obci je vhodné, aby řidič počítal i s tím, že někteří cyklisté, v rozporu s předpisy, jezdí bez vlastního osvětlení.

5.2 Jízda mimo obec a po vozovce neosvětlené veřejným osvětlením

Používání světlometů na vozovce neosvětlené veřejným osvětlením

Při jízdě v noci po vozovce neosvětlené lampami veřejného osvětlení musí řidič také používat světlomety vozidla, v souladu se zásadami pro jízdu za snížené viditelnost. Stejně jako na vozovce s veřejným osvětlením se řídí ustanoveními § 32, odst. 2 a 3 zákona č. 361/2000 Sb. (viz výše kap. 5.1), volí však šipku strategií.

Na vozovce bez veřejného osvětlení musí řidič co nejvíce minimalizovat omezení rozhledu světlenými podmínkami, a vůzdu, kde to pravidla dovolují, používat světla dálková.

Toto je velmi důležité zásada, ze které mnoho řidičů slevuje na úkor vlastní bezpečnosti a bezpečnosti osob, které se pohybují po vozovce, když i mimo obec používají světla potkávací.

Když řidič použije světla dálková, musí být ohleduplný a nesmí světlomety vozidla oslněvat ostatní řidiče a další účastníky provozu.

Při míjení protijedoucích vozidel musí řidič v dostatečném předstihu přepnout na světla potkávací a v duchu předchozí zásady, hned, jak to situace dovolí, přepnout zpět na světla dálková.

Řidič se musí také sám bránit oslnění od světlometů protijedoucích vozidel.

Při míjení protijedoucích vozidel se nemůže dívat přímo do jejich světel, naopak by měl pozorně sledovat pravý okraj vozovky jako místo s největším potenciálním nebezpečím.

Pokud řidič protijedoucího vozidla včas sám nepřeje na světla potkávací, je účelné, aby ho na nebezpečí upozornil řidič, který je oslňován, a to použitím světelného výstražného znamení v podobě tzv. světlené houkačky, která při zapnutých potkávacích světtech krátce spustí světla dálková. Použití světelné houkačky musí být krátké, tak aby dálková světla protijedoucího řidiče neoslnila, jen jej upozornila, že má stále zapnutá světla dálková.

Na potkávací světla musí řidič včas přepnout, i když dojde k vůzdlu jedoucí vpředu.

Při jízdě za jiným vozidlem musí řidič, zvláště v noci, důsledně udržovat bezpečnou vzdálenost. Je potřeba, aby řidič počítal i s možností, že řidič jedoucí vpředu zareaguje na překážku, kterou řidič jedoucí za ním nevidí, a to jak díky omezení rozhledu světelnými podmínkami, tak i omezením rozhledu vozidlem jedoucím vpředu. K obecně

platnému pravidlu o dodržování odstupu minimálně 2 sekund (pravidlo jednadvacet, dvaadvacet) je vhodné podle okolností přidat další sekundu.

Jízda na potkávací světla na vozovce neosvětlené veřejným osvětlením

V noci, na vozovce neosvětlené veřejným osvětlením, je zvláště nebezpečná jízda na potkávací světla rychlostí vyšší, než odpovídá omezení rozhledu světelnými podmínkami.

Na všech komunikacích, s výjimkou rychlostních, by měl řidič počítat s tím, že se zde mohou pohybovat chodci. Dokud nebude zavedena povinnost chodců používat za snížené viditelnosti na svém obléčení dostatečně výrazné reflexní prvky a dokud je chodci nebudou skutečně používat, musí řidič předpokládat, že po vozovce se mohou pohybovat i chodci s nekontrastním obléčením bez jakéhokoliv označení.

Nemá-li řidič dostatečný rozhled na vozovku, musí při přepnutí na světla potkávací výrazně zpomalit jízdu. Za dobrých adhezních a povětrnostních podmínek alespoň na 50 km/h, příp. nižší.

Výjimku mohou tvořit situace, kdy vozovku dostatečně osvětluje vozidla jedoucí vpředu, aniž by řidiči nepřiměřeně omezovala rozhled. Bývá to možné např. při jízdě za jiným vozidlem, které používá světla dálková, příp. i při jízdě v koloně vozidel. Při takové jízdě je možné jet rychlostí vyšší, řidič však musí sledovat situaci i před vozidlem jedoucím vpředu a zachovávat za ním dostatečný odstup.

Složitá situace z hlediska použití světel a přizpůsobení rychlosti jízdy nastává na rychlostních komunikacích (dálnicích a silnicích pro motorová vozidla), které až na výjimky nebývají osvětleny veřejným osvětlením.

I na rychlostních komunikacích používá řidič světla dálková vždy, když to pravidla provozu dovolují.

Problém nastává při vysoké intenzitě provozu, umožňující jízdu jen na světla potkávací. Je zcela zřejmé, že při použití potkávacích světel nejvyšší povolená rychlost (130 km/h) nekoresponduje s omezením rozhledu na neosvětlené překážky (viz kap. 3.4). Pokud by řidič měl počítat i s tím, že po dálnici může jít např. chodec v černém, matka nebo otec s kočárkem, musel by při přepnutí na světla potkávací podle okolností snížit rychlost až na 50 km/h. Tím by však významně bránit plynulosti silničního provozu, neboť ostatní vozidla se zpravidla pohybují rychlostí podstatně vyšší.

Většina řidičů se na rychlostních komunikacích spoléhá na to, že ostatní účastníci silničního provozu dodržují pravidla o provozu na dálnicích (viz ustanovení § 35 a následující zák. 361/2000 Sb. platný znění, viz ustanovení § 35 a následující platné ustanovení). Je zcela zřejmé, že při použití potkávacích světel nejvyšší povolená rychlost (130 km/h) nekoresponduje se omezením rozhledu na osvětlená motorová vozidla, tedy na citlivou hodnotu rychlostí, která je proto nejvyšší povolená rychlost (130 km/h).

Předpokládají tedy, že se zde budou pohybovat jen vozidla, která mají dostatečně vlastní osvětlení, protože „Mimo obslužná zařízení dálnice je ostatním účastníkům provozu na pozemních komunikacích zakázáno vstup na dálnici, chůze a jízda po dálnici.“

Je samozřejmé, že i na rychlostní komunikaci musí řidič přizpůsobit rychlost jízdy rozhledu, především se však bude jednat o rozhled na vozovku a na ostatní účastníky provozu, kteří se po dálnici mohou legálně pohybovat, tedy především na osvětlená motorová vozidla.

Jede-li řidič při použití potkávacích světel na rychlostní komunikaci běžnou provozní rychlostí, musí pozorně vnímat, jak vozovku osvětluje další vozidla, musí sledovat i situaci před vprůdu jedoucími vozidly a za posledním z nich si udržovat dostatečný odstup. Při vyšší rychlosti nejlépe alespoň 3 sekundy.

Bezprostředně musí řidič reagovat na všechny změny jízdní situace, zejména takové, které nejsou zcela obvyklé.

Pozoruje-li, že na komunikaci jsou prováděny stavební úpravy, údržba komunikace, došlo ke vzniku dopravní nehody apod., musí ihned velmi výrazně zpomalit jízdu.

Za neobvyklých podmínek musí řidič počítat i s tím, že na komunikaci se budou pohybovat osoby, např. z důvodu, aby opustil a porouchané či havarované vozidlo, označil a místo dopravní nehody, poskytly pomoc účastníkům nehody apod.

Těž na rychlostní komunikaci platí, že pokud nemá řidič dostatečně rozhled, např. díky dalším vozidlům, a musí použít světla potkávací, nemůže jet nejvyšší povolenou rychlostí, ale musí zpomalit.

Orientace na vozovce

Dalším problémem jízdy v noci je i horší orientace na vozovce. Při nízké úrovni vnějšího osvětlení se zhoršuje kvalita vidění. Oproti denní době tak řidič mj. hůř rozcezná dopravní značení a také se obtížněji orientuje na vozovce. Za tmy je mnohem obtížněji rozeznávat dopravní značení a také se obtížněji orientuje na vozovce.

Dvojí značení jízdních pruhů

Opravy vozovek se často provádějí při částečném uzavření komunikace. Pomocí přechodného značení se upraví šířka a počet jízdních pruhů nejlépe tak, aby vozovka byla průjezdná v obou směrech. Po dokončení oprav však někdy na vozovce zůstane dvojí značení. Ve dne je situace zvládnutelná, v noci však může být natolik nepřehledná, že řidič může částečně vjet i do protisměru.

Zatáčení a odočkování na neosvětlené vozovce

Chodci a cyklisté nedodržující pravidla silničního provozu

V noci i na zdánlivě odlehlých místech musí řidič počítat s pohybem chodců a někdy i cyklistů po vozovce, a to zejména ve dnech pracovního volna a ve dnech, které jim předcházejí. Pokud se tito účastníci silničního provozu vracejí ze zábavy, z restauračních zařízení apod., často se chovají značně uvolněně a zvláštní ustanovení pro chůzi a jízdu
nemotorových vozidel²² dodržují jen ledabyle. V takovém případě musí řidič mimořádně zvýšit opatrnost a počítat i s tím, že v závěsu za těmi rychlejšími se mohou na vozovce vyskytnout také chodci, kteří se navigují po středové čáře, osoby ležící na vozovce, příp. i neosvětlení nebo špatné osvětlení cyklisté.

- Chodci navigující se po středové čáře jsou chodci, kteří jdou v noci, mimo obec, bez vlastního osvětlení a středovou čáru využívají k tomu, aby udrželi směr. Takové chování bývá většinou ovlivněno alkoholem a je o to nebezpečnější, že potkávací světla jsou směrem ke středu vozovky stíněna kvůli zamezení oslnění protijedoucích řidičů. Chodce je tedy vidět ještě na kratší vzdálenost, než kdyby se pohyboval při pravém okraji vozovky, a lze mu jen obtížně vyhnout.

- Osoby ležící na vozovce jsou většinou původně chodci, kteří z jakéhokoliv důvodu leží na vozovce. Jedná se tak o překážku, která se může objevit na vozovce, příp. i neosvětlení nebo špatně osvětlení cyklisté.

- Neosvětlení nebo špatné osvětlení cyklisté jsou případy cyklistů, kteří se pohybují po vozovce v noci, bez řádně osvětleného jízdního kola, popř. pouze s přední svítilnou, jejíž světlo není ze závěsu vidět.

Je-li řidič jakýmkoliv způsobem varován, že hrozí výše popsaná nebezpečí, měl by skutečně dbát zvláštní opatrnosti. Měl by výrazně zapamatovat jízdu. Současně by měl počítat i s tím, že chodci a cyklisté, kteří se takto pohybují po vozovce, nemusí být schopni udržet přímou trajektorii. Při jejich objíždění by měl dodržet velký odstup, aby nedošlo ke střetu ani v případě jejich náhlého pádu na vozovku.

Projíždí-li řidič místem s výšším výskytem chodců, cyklistů, kteří nedodržují dopravní předpisy, zvláště kdy jsou výskyty vysoké, měl by být opatrnější při jízdě, a lze mu jen obtížně vyhnout.

Zvěřectvo

Řidiči si často neuvědomují nebezpečí vyplývající ze značky „pozor zvěř“. Zvěř je však často aktivní právě v noci a značky „pozor zvěř“ bývají skutečně umístovány tam, kde se zvěř doopravdy vyskytuje. Projíždí-li řidič takto označeným úsekem, musí zvlášť být opatrný v noci, kdy je zvěř vždy aktivní. Zvěř by měla být dbána o tom, že se nerozhlíží a chodí i středem vozovky.

Místa označená výstražnou značkou „pozor zvěř“ musí řidič projíždět se zvýšenou opatrností, zvláštní v noci.

Obdobně platí i pro značku „pozor zvířata“. Zvířata však v noci nebývají aktivní. Výšu uvedená zásada tak pro zvířata platí spíše v denní době.

Připomíte si statistiku dopravních nehod v úvodu kap. 2. Zvířectvo je, hned po člověku, druhou nejčastější příčinou dopravních nehod. Nepochybně platí, že řadě nehod se zvěří bylo možno zabránit pomocí větší předvidavosti řidičů.

²² Zákon č. 361/2000 Sb. ze dne 14. září 2000, o provozu na pozemních komunikacích, v platném znění - Oddíl 5 - Zvláštní ustanovení pro chůzi, jízdu nemotorových vozidel, jízdu na zvířata a vedení a hnaní zvířat, § 53 a následující
Příklad

Na videu č. 5 se můžete podívat na reakci řidiče na divokou zvěř v noci. V první ukázce vidíte reakci řidiče na zajce, který běží po levé straně vozovky. V druhé ukázce vidíte reakci řidiče na srnci, které přelétne před vozidlem.

Toto situace vyžaduje velmi rychlé jednání řidiče. V daném případě se jedná o zkušeného a také pozorného řidiče, který dokáže rychle a do 0,45 s po první optické reakci začíná intenzivně brzdit a zabránit tím střetu se srncem.

Nedostatečně osvětlené či neosvětlené překážky, nouzové stání

S výskytem nedostatečně osvětlených či neosvětlených překážek musí řidič počítat v místech stavebních úprav a v místech, kde došlo k dopravní nehodě. Může nastat i situace, kdy řidič sám bude trestně zastavit s vozidlem na silnici, např. z důvodu závady na vozidle nebo pro náhlou nevolnost.

5.3 Zásady společné

Ovlivnění kvality vidění nedostatečnou adaptací zraku na tmu

Z předchozího textu víte, že zrak se dokáže přizpůsobit různým hladinám vnějšího osvětlení. Přizpůsobení však vyžaduje čas. Při přechodu ze světla do tmy trvá i několik desítek minut, než se zrak dokonale adaptuje na tmu a je schopen rozpoznávat jednotlivé předměty s dostatečnou citlivostí.

Pokud řidič zahajuje jízdu bezprostředně poté, co opustil dobře osvětlené prostory, musí počítat i s dobou, kterou bude jeho zrak potřebovat na dokonale přizpůsobení se horším světelným podmínkam, a přizpůsobit tomu způsob jízdy.

Naopak, je-li zrak řidiče adaptován na tmu, měli by se řidič i posádka vozidla vyvarovat všeho, co toto adaptaci narušuje. Jedná se o svícení v kabině vozů a používání jiných, pro jízdu zbytečných, zdrojů světla. Typicky např. mobilních telefonů, videopřehrávačů apod.

Kromě toho, že používání takových zařízení řidičem je při jízdě vesměs zakázané, je potřebné si uvědomit, že je též mimořádně nebezpečné, a to nejen v noci, ale i ve dne. Za tmy se navíc situace zhorší tím, že při osvětlení kabiny vozu se oči řidiče adaptují na vyšší hladinu osvětlení, než odpovídá situaci před vozidlem, a na vozovce pak hůře dokáží odhalit málo kontrastní překážky.

S používáním vnitřních zdrojů světla v kabině vozu souvisí i další problém, a to je jejich možné zrcadlení na sklech vozidla, zvláště nejsou-li tato z vnitřní strany dokonale čistá. Za tmy se navíc situaci zhorší tím, že při osvětlení kabiny vozu se oči řidiče adaptují na vyšší hladinu osvětlení, než odpovídá situaci před vozidlem, a na vozovce pak hůře dokáží odhalit málo kontrastní překážky.

V noci by se řidič i posádka měli vyvarovat používání zbytečných zdrojů světla v kabině vozu, pokud nejsou určeny a uzpůsobeny pro používání při jízdě ve vozidle. Je-li nezbytné je použít, měl by řidič na vhodném místě zastavit.

Ovlivnění kvality vidění oslněním

Kvalitu vidění řidiče dočasně ovlivňuje oslnění. Dochází k němu při prudkém osvětlení očí při jízdě ve vozidle, před vozem nebo při přímém pozorování silných zdrojů světla.

Slabé oslnění není nebezpečné, protože lidské oko se dokáže díky rychlé reakci zornic přizpůsobit a po krátké době se znovu adaptovat na tmu.

Silné oslnění může být způsobeno načasováním světelného zdroje a může to přinести velmi dlouhá doba. Řidič se musí bránit silnému oslnění a vyvarovat se přímého pozorování silných zdrojů světla.

Při míjení protijedoucích vozidel by měl řidič směřovat zrak k pravému okraji vozovky (viz výše používání světlometů). Při oslňování vozidlem jedoucím vzadu musí upravit nastavení vnitřního zpětného zrcátka tak, aby oslnění zamezil.

Zdrojem oslnění mohou být i světily vozidel jedoucích vpředu (koncové nebo do mlhy).

Při jízdě za jiným vozidlem není vhodné přímo sledovat jeho zadní světily.

Zdrojem oslnění mohou být i další objekty, jako např. reflexní nápisy na billboardech a světlené reklamy.

Řidič by se měl vyvarovat podnětů, které nejsou důležité pro řízení vozidla a odpoutávají jeho pozornost od sledování dopravního značení a situace na vozovce.

Někdy mohou oslnění způsobit i příliš reflexní fólie na dopravních značkách. Zvýšenou pozornost pak vyžadují situace, kdy jsou kombinovány značky staré a nové (více a méně reflexní). Pozornost musí řidič věnovat oběma typům.

Zvýšenou pozornost musí řidič při použití dopravního značení různých typů.

Rušivě mohou působit i odlesky např. na mokré vozovce. V praxi naleznete i další vlivy, které Vám zhoršují kvalitu vidění v noci. Jednoduchá zásada zní:

Pokud řidič hůře vidí, musí zvýšit opatrnost a zpomalit jízdu. Současně musí být ohleduplný k ostatním účastníkům provozu a zvláště při míjení protijedoucích vozidel a při jízdě za jiným vozidlem přepnut na světla potkávací.

Ovlivnění pozornosti únavou

cyklus, a proto musí počítat i s tím, že zvláště v temném nočním období, tj. mezi druhou a čtvrtou hodinou ranní, přirozeně dojde k největšímu útlumu organismu.

V noci by měl řidič jezdit jen tehdy, je-li dostatečně odpočatý. Aby snížil únavu, doporučuje se nejprve před jízdní těžká jídla, dodržovat pitný režim, dbá na správné klima ve vozidle a především dělat pravidelné zastávky.

Největším nepřítelem řidiče, a to nejen v noci, ale i ve dne, je tzv. mikrospánek, kterým lidské tělo reaguje na přetížení organismu.

Jedná se o krátkou fázi spánku, která může trvat od několika desetin sekundy až po 30 sekund, během které chová nevinná žádné podněty, jako jsou zvuky nebo vizuální vjemy.

Po této době dojde k probuzení či usnutí. Nedojde-li k havárii dříve, řada nehod vzniká ve fázi probuzení, při které řidič reaguje zmateně a panicky.

Samotnému mikrospánku předchází opakované snížení pozornosti, zvýšené únava a ospalost. Tyto projevy mohou být individuální, nelze je však přehlédnout.

Pozoruje-li řidič na sobě únavu, ospalost, poklesy pozornosti, musí skutečně co nejdříve zastavit a odpočnout si. Okamžité přetížení organismu nelze překonat během jízdy.

Doporučuje se krátký spánek po dobu 15 až 20 minut. Pokud řidič není po této době dostatečně osvěžen, musí si odpočnout důkladně a v jízdě pokračovat nejlépe až ráno.

Ovlivnění pozornosti zbytečnými činnostmi

Řízení vozidla je náročná činnost. Je-li před sledováním a vyhodnocováním jízdní situace upřednostněna jiná nadřazená činnost jako telefonování, pití, obsluha dětí, ladění rádia, ovládání jiných, pro jízdu zcela zbytečných zařízení, hádka se spolujezdcem, čtení reklamních sloganů, prohlížení se obrázků na reklamách apod., naruší se proces získávání a zpracování informací důležitých pro jízdu a snadno dojde k situaci, kdy řidič důležitý podnět nezaregistroval nebo jej zaregistroval pozdě a nestačí na něj zareagovat. To může mít i fatální následky.

V průběhu jízdy by řidič neměl provádět činnosti, které nesouvisejí s řízením vozidla. Potřebujete-li něco neodkladné vyřídit, udělat apod., musí na vhodném místě zastavit, vykonat, co je potřebné a teprve pak pokračovat v jízdě.

Ovlivnění pozornosti mnoha podnětů

Četnost podnětů je dána většinou složitosti jízdní situace. Projíždí-li řidič členitým úsekem vozovky (křižovatky, místa s četným dopravním značením, místa stavebních úprav, místa určená pro přecházení chodců apod.), musí řidič snížit hustotu podnětů tím, že zpomalí jízdu. Zpomalení získá více času na registraci a zpracování důležitých podnětů i na účelné jednání.

V složitých jízdních situacích musí řidič zpomalit.

5.4 Zásada omezené důvěry

Co je to zásada omezené důvěry

Možná jste si všimli, že v předchozím textu bylo upozorněno i na situace, jejichž nebezpečnost byla dána tím, že jiní účastníci silničního provozu porušují jeho pravidla. V silniční dopravě a v dopravě všeobecně se uplatňuje zásada tzv. omezené důvěry. Tato zásada je používaná v Evropě od 40. let a v ČR od 50. let.

Zásada omezené důvěry znamená, že „řidič motorového vozidla se může spoléhat na dodržení dopravních předpisů ostatními účastníky provozu na pozemních komunikacích, nevyplývá-li z konkrétní situace opak.“

Podle principu omezené důvěry „po účastníkovi silničního provozu nelze spravedlivě požadovat, aby bez dalšího předpokládal možné porušení pravidel silničního provozu jinými účastníky a aby tomu přizpůsobil své jednání.“ Proto, pokud jiný účastník provozu vytvoří „řidiči svým náhlým, neočekávaným a nepředvídatelným chováním překážku, která je pro něj objektivně nezvládnutelná, řidič neodpovídá za vzniklý protiprávní následek.

Kdy se nelze spoléhat na dodržování pravidel ostatními účastníky

Zásada omezené důvěry však neplatí za všech situací. Výjimku tvoří případy, kdy ze situace v silničním provozu vyplývá povinnost

- dbát na vyššenou opatřnost anebo
- s předstihem reagovat na vzniklou situaci tak, aby bylo zabráněno nevodě.

Dbát zvýšené opatřnosti musí řidič zejména v případech,

- kdy se na komunikaci anebo v její blízkosti pohybují děti, osoby těžce zdravotně postižené, osoby velmi staré anebo zvířata zjevně se pohybující volně; upozorněno bylo na situace, kdy se řidič pohybuje v místech častého výskytu chodců a cyklistů, jako jsou restaurování zařízení, nádraží apod.,
- kdy to vyplývá z existence instalovaných dopravních značek; upozorněno bylo na jízdu kolem zastávek hromadné dopravy, v blízkosti přechodů pro chodce, v místě značek pozor zvěř a další případy,
- kdy to vyplývá ze situace v silničním provozu; upozorněno bylo na situace, kdy jsou na vozovce prováděny stavební úpravy, při vzniku dopravní nehody, při nouzovém odstavení vozidla jiným řidičem.

S předstihem musí řidič na vzniklou situaci reagovat tehdy,

- kdy z konkrétní situace vyplývá obava, že ostatní účastníci nedodrží pravidla silničního provozu; upozorněno bylo na chodce, kteří se nejvíce v průběhu středové čáry, ležící osoby, neosvětlené cyklisty.

Patří sem i další situace, které nejsou nijak specifické pro jízdu v noci, protože se s nimi řidič setká ve dne i v noci. Typicky např., když řidič, přijíždějící z vedlejší silnice, přehlédne značku „dej přednost v jízdě“. Říada řidičů reaguje troubením, aniž by upravila rychlost. Přehlédnout značku však může každý a každý komu se

27 Rozhodnutí Nejvyššího soudu ČR 3 Tdo 593/2007
28 Rozhodnutí Nejvyššího soudu ČR 3 Tdo 727/2005
29 Rozhodnutí Nejvyššího soudu ČR 6 Tdo 143/2011
30 Rozhodnutí Nejvyššího soudu ČR 6 Tdo 143/2011
to i stalo a měl to štěstí, že na hlavní silnici nejel hlupák, je mu dodnes vděčný za to, že místo troubení a nárazu do vozidla v plné rychlosti použil brzdy a zabránil dopravní nehodě a těžkým zraněním posádek obou vozidel. V nebezpečné situaci musí být prioritou každého řidiče zabránění nehodě bez ohledu na to, kdo jaké pravidlo silničního provozu porušil.

Každý řidič by si měl uvědomit, že neexistuje jasná hranice mezi tím, kdy se může a nemůže spoléhat na dodržování předpisů ostatními účastníky provozu a není ani dobré se to dozvědět u soudu. Platí tak princip opatrnosti, řidič musí jezdit obezřetně, předvídat nebezpečí a za každých okolností, bez ohledu na to, kdo pravidla dodržel, se snažit zabránit dopravní nehodě.
6 Závěrečné shrnutí zásad pro jízdu za viditelnosti snížené tmou

Při jízdě si vždy uvědomte, že v noci řidiči omezují rozhled nejen pevné překážky a stav atmosféry, ale významně i světelné podmínky.

Kvalita vidění je horší, protože za šera lidské oči nedokáži rozlišovat barvy a zhoršuje se i ostrost vidění.

Jízda po vozovce osvětlené veřejným osvětlením

Při dostatečném veřejném osvětlení vozovky používejte potkávací světla.

Nehrozí-li nebezpečí oslnění řidičů ostatních vozidel, nebojte se i v obci použít světla dálková pro dočasné osvětlení místa nedostatečně osvětleného veřejným osvětlením, nebo místa, kde se mohou vyskytnout chodci či jiní neosvětlení účastníci provozu.

Pokud si neosvětlenou oblast nemůžete přisvětit, zpomalte.

Jezděte předvídatě.

Jízda po vozovce neosvětlené veřejným osvětlením

Co nejvíce používejte dálková světla.

Buďte ohleduplní, neoslňujte jiné řidiče, dálková světla včas přepněte na světla potkávací.

Jedete-li v blízkosti za jiným vozidlem, přepněte na potkávací světla, udržujte však bezpečnou vzdálenost nejméně 2 s, lépe však více. Počítejte i s možností, že řidič před vámi zareaguje na překážku, kterou nevidíte.

Jedete-li při intenzivním provozu po rychlostní komunikaci s potkávacími světy, věnujte maximální pozornost sledování provozu i před vpředu jedoucími vozidly, počítejte i s možností vzniku dopravních nehod a s nesprávně odstavenými vozidly.

Jezděte předvídatě.

Kdy zpomalit

Zpomalte vždy, když:
• přepněte na potkávací světla,
• pozorujete vyšší výskyt chodců, cyklistů a jiných neosvětlených či nedostatečně osvětlených účastníků silničního provozu,
• při jakékoliv nestandardní situaci.

Nouzové stání

Mimo obec vozidlo zásadně odstavujte mimo vozovku.

Při nouzovém stání na vozovce nebo krajnici zapněte výstražná světla, obléčte si bezpečnostní vestu, v dostatečné vzdálenosti od vozidla (mimo obec nejméně 50 m, na dálnici nejméně 100 m) umístěte výstražný trojúhelník a vozidlo nechte označené i aktivním zdrojem světla. Nařiďte členům posádky, aby si oblékli bezpečnostní vesty, opatrně opustili vozidlo a vyčkali na pomoc na bezpečném místě. V nepřehledném místě řiďte dopravu.

Zásady společné

Nejezděte, máte-li zdravotní potíže, jste-li unavení.
Nejezděte, pokud v noci hůře vidíte, starší řidiči by si měli uvědomit, že s věkem se zhoršuje kontrastní citlivost očí.

Závěr

Na silnici se ve dne i v noci říďte jednoduchou zásadou profesora Bradáče, dlouholetého ředitele Ústavu soudního inženýrství Vysokého učení technického v Brně, který říká: „Je lepší přijet o 15 minut později, než nepřijet vůbec.”

Seznam videoukázek

Video č. 1 (kapitola 1.4) – zachycuje jízdu ve dne. Ukazuje reakce řidiče na chodce v barevném oblečení, který se pohybuje při pravém okraji vozovky.

Video č. 2 (kapitola 1.4) – zachycuje stejnou jízdní situaci jako na videu č. 2 při jízdě v noci.

Video č. 3 (kapitola 2.4) – zachycuje jízdu řidiče ve noci a to v obci, v členitém úseku vozovky, v místě přechodu pro chodce. Ukazuje reakce řidiče na chodce na přechodu a také jak řidič dokáže dělit svoji pozornost mezi přecházejícím chodcem a přijíždějícím vozidlem v křížovatce.

Video č. 5 (kapitola 5.2) – ukazuje reakce řidičů na zvěř. V první ukázce řidič reaguje na zajce na levém okraji vozovky, v druhé na srnci přebíhajícího vozovku želev.
Použité zdroje

MAXERA, P.; KLEDUS, R.; SEMELA, M.; BRADÁČ, A. Souhrnná analýza chování řidiče při jízdě přes moderně řešený přechod pro chodce. Soudní inženýrství, 2015, roč. 26, č. 1, s. 22-33. ISSN: 1211-443X.

Rozhodnutí Nejvyššího soudu ČR 3 Tdo 593/2007
Rozhodnutí Nejvyššího soudu ČR 3 Tdo 727/2005
Rozhodnutí Nejvyššího soudu ČR 6 Tdo 143/2011
Rozhodnutí Nejvyššího soudu ČR 6 Tdo 143/2011
Vyhláška 341/2014 Sb. ze dne 9. prosince 2014, v platném znění, o schvalování technické způsobilosti a technických podmínek provozu vozidel na pozemních komunikacích

Poděkování za spolupráci